• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel

    Author(s)
    Esfandbod, Maryam
    Merritt, Christopher R
    Rashti, Mehran Rezaei
    Singh, Balwant
    Boyd, Sue E
    Srivastava, Prashant
    Brown, Christopher L
    Butler, Orpheus M
    Kookana, Rai S
    Chen, Chengrong
    Griffith University Author(s)
    Brown, Chris L.
    Boyd, Sue E.
    Chen, Chengrong
    Merritt, Chris
    Butler, Orpheus M.
    Esfandbod, Maryam
    Rezaei Rashti, Mehran
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu2+) and nickel (Ni2+) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu2+ (∼11 times) and Ni2+ (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) 13C NMR spectroscopies showed that ...
    View more >
    Char as a carbon-rich material, can be produced under pyrolytic conditions, wildfires or prescribed burn offs for fire management. The objective of this study was to elucidate mechanistic interactions of copper (Cu2+) and nickel (Ni2+) with different chars produced by pyrolysis (green waste, GW; blue-Mallee, BM) and forest fires (fresh-burnt by prescribed fire, FC; aged char produced by wild fire, AC). The pyrolytic chars were more effective sorbents of Cu2+ (∼11 times) and Ni2+ (∼5 times) compared with the forest fire chars. Both cross-polarization (CPMAS-NMR) and Bloch decay (BDMAS-NMR) 13C NMR spectroscopies showed that forest fire chars have higher woody components (aromatic functional groups) and lower polar groups (e.g. O-alkyl C) compared with the pyrolytic chars. The polarity index was greater in the pyrolytic chars (0.99–1.34) than in the fire-generated chars (0.98–1.15), while aromaticity was lower in the former than in the latter. Fourier transform infrared (FTIR) and Raman spectroscopies indicated the binding of carbonate and phosphate with both Cu2+ and Ni2+ in all chars, but with a greater extent in pyrolytic than forest fire-generated chars. These findings have demonstrated the key role of char's oxygen-containing functional groups in determining their sorption capacity for the Cu2+ and Ni2+ in contaminated lands.
    View less >
    Journal Title
    Environmental Pollution
    Volume
    220
    DOI
    https://doi.org/10.1016/j.envpol.2016.10.080
    Subject
    Soil Chemistry (excl. Carbon Sequestration Science)
    Publication URI
    http://hdl.handle.net/10072/337826
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander