• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Passive control of a biventricular assist device with compliant inflow cannulae

    Thumbnail
    View/Open
    GregoryPUB2619.pdf (190.0Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Gregory, Shaun David
    Pearcy, Mark John
    Timms, Daniel
    Griffith University Author(s)
    Gregory, Shaun D.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively ...
    View more >
    Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support.
    View less >
    Journal Title
    Artificial Organs
    Volume
    36
    Issue
    8
    DOI
    https://doi.org/10.1111/j.1525-1594.2012.01504.x
    Copyright Statement
    © 2012 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Passive control of a biventricular assist device with compliant inflow cannulae, Artificial Organs, Volume 36, Issue 8, August 2012, Pages 683–690 which has been published in final form at https://doi.org/10.1111/j.1525-1594.2012.01504.x. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
    Subject
    Biomedical engineering
    Biomedical engineering not elsewhere classified
    Clinical sciences
    Publication URI
    http://hdl.handle.net/10072/338773
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander