• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Characterisation of the femtosecond laser micro-grooving process for Germanium substrates

    Author(s)
    Li, L
    Wang, J
    Li, HZ
    Griffith University Author(s)
    Li, Huaizhong
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    An experimental study is reported to characterise the femtosecond (FS) laser grooving process for Germanium (Ge) substrates. The effects of process parameters, including laser fluence, pulse repetition rate and scan speed, on the groove characteristics, material removal rate (MRR) and heat affected zone (HAZ) size are discussed. It is shown that with properly selected process parameters, high quality micro-grooves can be obtained on Ge wafers. Recommendations are finally made on the selection of the most appropriate process parameters for FS micro-grooving of Ge substrates.An experimental study is reported to characterise the femtosecond (FS) laser grooving process for Germanium (Ge) substrates. The effects of process parameters, including laser fluence, pulse repetition rate and scan speed, on the groove characteristics, material removal rate (MRR) and heat affected zone (HAZ) size are discussed. It is shown that with properly selected process parameters, high quality micro-grooves can be obtained on Ge wafers. Recommendations are finally made on the selection of the most appropriate process parameters for FS micro-grooving of Ge substrates.
    View less >
    Journal Title
    Materials Science Forum
    Volume
    874
    DOI
    https://doi.org/10.4028/www.scientific.net/MSF.874.291
    Subject
    Physical chemistry
    Machining
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/338806
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander