Characterisation of the femtosecond laser micro-grooving process for Germanium substrates
Author(s)
Li, L
Wang, J
Li, HZ
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
An experimental study is reported to characterise the femtosecond (FS) laser grooving process for Germanium (Ge) substrates. The effects of process parameters, including laser fluence, pulse repetition rate and scan speed, on the groove characteristics, material removal rate (MRR) and heat affected zone (HAZ) size are discussed. It is shown that with properly selected process parameters, high quality micro-grooves can be obtained on Ge wafers. Recommendations are finally made on the selection of the most appropriate process parameters for FS micro-grooving of Ge substrates.An experimental study is reported to characterise the femtosecond (FS) laser grooving process for Germanium (Ge) substrates. The effects of process parameters, including laser fluence, pulse repetition rate and scan speed, on the groove characteristics, material removal rate (MRR) and heat affected zone (HAZ) size are discussed. It is shown that with properly selected process parameters, high quality micro-grooves can be obtained on Ge wafers. Recommendations are finally made on the selection of the most appropriate process parameters for FS micro-grooving of Ge substrates.
View less >
View less >
Journal Title
Materials Science Forum
Volume
874
Subject
Physical chemistry
Machining
Materials engineering