Robust tensor factorization using maximum correntropy criterion
Author(s)
Zhang, M
Gao, Y
Sun, C
La Salle, J
Liang, J
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Traditional tensor decomposition methods, e.g., two dimensional principle component analysis (2DPCA) and two dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE) and are sensitive to outliers. In this paper, we propose a new robust tensor factorization method using maximum correntropy criterion (MCC) to improve the robustness of traditional tensor decomposition methods. A half-quadratic optimization algorithm is adopted to effectively optimize the correntropy objective function in an iterative manner. It can effectively improve the robustness of a tensor decomposition method to outliers without ...
View more >Traditional tensor decomposition methods, e.g., two dimensional principle component analysis (2DPCA) and two dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE) and are sensitive to outliers. In this paper, we propose a new robust tensor factorization method using maximum correntropy criterion (MCC) to improve the robustness of traditional tensor decomposition methods. A half-quadratic optimization algorithm is adopted to effectively optimize the correntropy objective function in an iterative manner. It can effectively improve the robustness of a tensor decomposition method to outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracy rate on handwritten digit recognition.
View less >
View more >Traditional tensor decomposition methods, e.g., two dimensional principle component analysis (2DPCA) and two dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE) and are sensitive to outliers. In this paper, we propose a new robust tensor factorization method using maximum correntropy criterion (MCC) to improve the robustness of traditional tensor decomposition methods. A half-quadratic optimization algorithm is adopted to effectively optimize the correntropy objective function in an iterative manner. It can effectively improve the robustness of a tensor decomposition method to outliers without introducing any extra computational cost. Experimental results demonstrated that the proposed method significantly reduces the reconstruction error on face reconstruction and improves the accuracy rate on handwritten digit recognition.
View less >
Conference Title
Proceedings - International Conference on Pattern Recognition
Volume
0
Subject
Pattern recognition
Numerical computation and mathematical software