• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Angular dependence of the strong-field ionization measured in randomly oriented hydrogen molecules

    Thumbnail
    View/Open
    57718_1.pdf (437.4Kb)
    Author(s)
    Magrakvelidze, Maia
    He, Feng
    De, Sankar
    Bocharova, Irina
    Ray, Dipanwita
    Thumm, Uwe
    Litvinyuk, IV
    Griffith University Author(s)
    Litvinyuk, Igor
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    We employed electron-ion coincidence momentum spectroscopy to measure the relative angle between an emitted electron and a deuteron resulting from field dissociation of the molecular ion produced by a circularly polarized pulse. We deduced the angular dependence of the molecular ionization probability without having to align the molecules first. We determined that with 50 fs pulses of 1850 nm wavelength and 2x10(14) W/cm(2) intensity neutral D-2 molecules are 1.15 times more likely to be ionized when the laser electric field is parallel to the molecular axis than for the perpendicular orientation, in excellent agreement with ...
    View more >
    We employed electron-ion coincidence momentum spectroscopy to measure the relative angle between an emitted electron and a deuteron resulting from field dissociation of the molecular ion produced by a circularly polarized pulse. We deduced the angular dependence of the molecular ionization probability without having to align the molecules first. We determined that with 50 fs pulses of 1850 nm wavelength and 2x10(14) W/cm(2) intensity neutral D-2 molecules are 1.15 times more likely to be ionized when the laser electric field is parallel to the molecular axis than for the perpendicular orientation, in excellent agreement with our ab initio theoretical model. Our results also agree with predictions of the molecular Ammosov-Delone-Krainov (mo-ADK) theory, as well as those of a similar experiment performed with 800 nm pulses of comparable intensity and duration on H-2 molecules.
    View less >
    Journal Title
    Physical Review A
    Volume
    79
    Issue
    3
    DOI
    https://doi.org/10.1103/PhysRevA.79.033408
    Copyright Statement
    © 2009 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Atomic and Molecular Physics
    Mathematical Sciences
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/33901
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander