Field-Free Orientation of CO Molecules by Femtosecond Two-Color Laser Fields

View/ Open
Author(s)
De, S
Znakovskaya, I
Ray, D
Anis, F
Johnson, Nora G
Bocharova, IA
Magrakvelidze, M
Esry, BD
Cocke, CL
Litvinyuk, IV
Kling, MF
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
We report the first experimental observation of nonadiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion angular distributions after Coulomb explosion with an 800 nm pulse. The orientation of the molecules is controlled by the relative phase of the two-color field. The results are compared to quantum mechanical rigid rotor calculations. The demonstrated method can be applied to study molecular frame dynamics under field-free conditions in conjunction with a variety of spectroscopy ...
View more >We report the first experimental observation of nonadiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion angular distributions after Coulomb explosion with an 800 nm pulse. The orientation of the molecules is controlled by the relative phase of the two-color field. The results are compared to quantum mechanical rigid rotor calculations. The demonstrated method can be applied to study molecular frame dynamics under field-free conditions in conjunction with a variety of spectroscopy methods, such as high-harmonic generation, electron diffraction, and molecular frame photoelectron emission.
View less >
View more >We report the first experimental observation of nonadiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion angular distributions after Coulomb explosion with an 800 nm pulse. The orientation of the molecules is controlled by the relative phase of the two-color field. The results are compared to quantum mechanical rigid rotor calculations. The demonstrated method can be applied to study molecular frame dynamics under field-free conditions in conjunction with a variety of spectroscopy methods, such as high-harmonic generation, electron diffraction, and molecular frame photoelectron emission.
View less >
Journal Title
Physical Review Letters
Volume
103
Issue
15
Copyright Statement
© 2009 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Mathematical sciences
Physical sciences
Atomic and molecular physics
Engineering