• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Writer Identification by Training on One Script but Testing on Another

    Author(s)
    Adak, Chandranath
    Chaudhuri, Bidyut B.
    Blumenstein, Michael
    Griffith University Author(s)
    Blumenstein, Michael M.
    Adak, Chandranath
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    This paper deals with identifying a writer from his/her offline handwriting. In a multilingual country where a writer can scribe in multiple scripts, writer identification becomes challenging when we have individual handwriting data in one script while we need to verify/identify a writer from handwriting in another script. In this paper such an issue is addressed with two scripts: English and Bengali. Here we model the task as a classification problem, where training data contains only Bengali handwritten samples and testing is performed on English handwritten texts. This work is based on the understanding that a writer has ...
    View more >
    This paper deals with identifying a writer from his/her offline handwriting. In a multilingual country where a writer can scribe in multiple scripts, writer identification becomes challenging when we have individual handwriting data in one script while we need to verify/identify a writer from handwriting in another script. In this paper such an issue is addressed with two scripts: English and Bengali. Here we model the task as a classification problem, where training data contains only Bengali handwritten samples and testing is performed on English handwritten texts. This work is based on the understanding that a writer has some inherent stroke characteristics that are independent of the script in which (s)he writes. In this work, some implicit structural and statistical features are extracted, and multiple classifiers are employed for writer identification. Many training sessions are run on a database of 100 writers and the performances are analyzed. We have obtained encouraging results on this database, which show the effectiveness of our method.
    View less >
    Conference Title
    2016 23rd International Conference on Pattern Recognition (ICPR)
    DOI
    https://doi.org/10.1109/ICPR.2016.7899792
    Subject
    Computer Vision
    Publication URI
    http://hdl.handle.net/10072/339287
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander