• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An improved neural ensemble framework for accurate PV output power forecast

    Author(s)
    Raza, Muhammad Qamar
    Nadarajah, Mithulananthan
    Ekanayake, Chandima
    Griffith University Author(s)
    Ekanayake, Chandima MB.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    A significant role of renewable energy resource such as solar photovoltaic (PV) is substantially important for the smart grid. One of a major challenge for large scale integration of PV into the grid is intermittent and uncertain nature of solar PV. Therefore, developing a framework for accurate PV output power forecast is utmost important. In this research, a novel ensemble forecast framework is purposed. A novel feed forward neural network (FNN) ensemble based forecast framework is proposed and trained with particle swarm optimization (PSO). The wavelet transform (WT) technique is applied to handle the sharp spikes and ...
    View more >
    A significant role of renewable energy resource such as solar photovoltaic (PV) is substantially important for the smart grid. One of a major challenge for large scale integration of PV into the grid is intermittent and uncertain nature of solar PV. Therefore, developing a framework for accurate PV output power forecast is utmost important. In this research, a novel ensemble forecast framework is purposed. A novel feed forward neural network (FNN) ensemble based forecast framework is proposed and trained with particle swarm optimization (PSO). The wavelet transform (WT) technique is applied to handle the sharp spikes and fluctuations in historical PV output data. Correlated variables such as PV output power data, solar irradiance, temperature, humidity and wind speed are applied as inputs to forecast the PV output power precisely. The performance of proposed framework was analyzed for one day ahead load PV output power forecast of summer (S), autumn (A), winter (W) and spring (SP) days. The selected days from each season are a clear day (CD), partial cloudy day (PCD) and cloudy day (CLD). The proposed forecast framework provides higher forecast accuracy compared to persistence and backpropagation neural network (BPNN) model.
    View less >
    Conference Title
    26th Australasian Universities Power Engineering Conference 2016: Increasing Renewable Generation and Battery Storage in Power Systems
    DOI
    https://doi.org/10.1109/AUPEC.2016.7749296
    Subject
    Power and Energy Systems Engineering (excl. Renewable Power)
    Publication URI
    http://hdl.handle.net/10072/339305
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander