A community-based framework for aquatic ecosystem models
Author(s)
Trolle, Dennis
Hamilton, David P
Hipsey, Matthew R
Bolding, Karsten
Bruggeman, Jorn
Mooij, Wolf M
Janse, Jan H
Nielsen, Anders
Jeppesen, Erik
Elliott, J Alex
Makler-Pick, Vardit
Petzoldt, Thomas
Rinke, Karsten
Flindt, Mogens R
Arhonditsis, George B
Gal, Gideon
Bjerring, Rikke
Tominaga, Koji
Hoen, Jochem't
Downing, Andrea S
Marques, David M
Fragoso, Carlos R
Sondergaard, Martin
Hanson, Paul C
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we aim to (i) advance ...
View more >Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv) increase the transparency of model structure, assumptions and techniques, (v) achieve a greater understanding of aquatic ecosystem functioning, (vi) increase the reliability of predictions by aquatic ecosystem models, (vii) stimulate model inter-comparisons including differing model approaches, and (viii) avoid ‘re-inventing the wheel’, thus accelerating improvements to aquatic ecosystem models. We intend to achieve this as a community that fosters interactions amongst ecologists and model developers. Further, we outline scientific topics recently articulated by the scientific community, which lend themselves well to being addressed by integrative modelling approaches and serve to motivate the progress and implementation of an open source model framework.
View less >
View more >Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv) increase the transparency of model structure, assumptions and techniques, (v) achieve a greater understanding of aquatic ecosystem functioning, (vi) increase the reliability of predictions by aquatic ecosystem models, (vii) stimulate model inter-comparisons including differing model approaches, and (viii) avoid ‘re-inventing the wheel’, thus accelerating improvements to aquatic ecosystem models. We intend to achieve this as a community that fosters interactions amongst ecologists and model developers. Further, we outline scientific topics recently articulated by the scientific community, which lend themselves well to being addressed by integrative modelling approaches and serve to motivate the progress and implementation of an open source model framework.
View less >
Journal Title
Hydrobiologia
Volume
683
Issue
1
Subject
Earth sciences
Environmental sciences
Biological sciences
Ecology not elsewhere classified