• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification

    Thumbnail
    View/Open
    YePUB2785.pdf (1.025Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Ye, Minchao
    Qian, Yuntao
    Zhou, Jun
    Tang, Yuan Yan
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    A big challenge of hyperspectral image (HSI) classification is the small size of labeled pixels for training classifier. In real remote sensing applications, we always face the situation that an HSI scene is not labeled at all, or is with very limited number of labeled pixels, but we have sufficient labeled pixels in another HSI scene with the similar land cover classes. In this paper, we try to classify an HSI scene containing no labeled sample or only a few labeled samples with the help of a similar HSI scene having a relative large size of labeled samples. The former scene is defined as the target scene, while the latter ...
    View more >
    A big challenge of hyperspectral image (HSI) classification is the small size of labeled pixels for training classifier. In real remote sensing applications, we always face the situation that an HSI scene is not labeled at all, or is with very limited number of labeled pixels, but we have sufficient labeled pixels in another HSI scene with the similar land cover classes. In this paper, we try to classify an HSI scene containing no labeled sample or only a few labeled samples with the help of a similar HSI scene having a relative large size of labeled samples. The former scene is defined as the target scene, while the latter one is the source scene. We name this classification problem as cross-scene classification. The main challenge of cross-scene classification is spectral shift, i.e., even for the same class in different scenes, their spectral distributions maybe have significant deviation. As all or most training samples are drawn from the source scene, while the prediction is performed in the target scene, the difference in spectral distribution would greatly deteriorate the classification performance. To solve this problem, we propose a dictionary learning-based feature-level domain adaptation technique, which aligns the spectral distributions between source and target scenes by projecting their spectral features into a shared low-dimensional embedding space by multitask dictionary learning. The basis atoms in the learned dictionary represent the common spectral components, which span a cross-scene feature space to minimize the effect of spectral shift. After the HSIs of two scenes are transformed into the shared space, any traditional HSI classification approach can be used. In this paper, sparse logistic regression (SRL) is selected as the classifier. Especially, if there are a few labeled pixels in the target domain, multitask SRL is used to further promote the classification performance. The experimental results on synthetic and real HSIs show the advantages of the proposed method for cross-scene classification.
    View less >
    Journal Title
    IEEE Transactions on Geoscience and Remote Sensing
    Volume
    55
    Issue
    3
    DOI
    https://doi.org/10.1109/TGRS.2016.2627042
    Copyright Statement
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Geophysics
    Geomatic engineering
    Publication URI
    http://hdl.handle.net/10072/340635
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander