• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A likelihood-based data fusion model for the integration of multiple sensor data: A case study with vision and lidar sensors

    Author(s)
    Jo, Jun
    Tsunoda, Yukito
    Stantic, Bela
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Stantic, Bela
    Jo, Jun
    Liew, Alan Wee-Chung
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Sensors have been developed and applied in a wide range of fields such as robotics and autonomous vehicle navigation (AVN). Due to the inability of a single sensor to fully sense its surroundings, multiple sensors based on individual specialties are commonly used in order to complement the shortcomings and enrich perception. However, it is challenging to integrate the heterogeneous types of sensory information and produce useful results. This research aims to achieve a high degree of accuracy with a minimum false-positive and false-negative rate for the sake of reliability and safety. This paper introduces a likelihood-based ...
    View more >
    Sensors have been developed and applied in a wide range of fields such as robotics and autonomous vehicle navigation (AVN). Due to the inability of a single sensor to fully sense its surroundings, multiple sensors based on individual specialties are commonly used in order to complement the shortcomings and enrich perception. However, it is challenging to integrate the heterogeneous types of sensory information and produce useful results. This research aims to achieve a high degree of accuracy with a minimum false-positive and false-negative rate for the sake of reliability and safety. This paper introduces a likelihood-based data fusion model, which integrates information from various sensors, maps it into the integrated data space and generates the solution considering all the information from the sensors. Two distinct sensors: an optical camera and a LIght Detection And Range (Lidar) sensor were used for the experiment. The experimental results showed the usefulness of the proposed model in comparison with single sensor outcomes.
    View less >
    Conference Title
    ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 4
    Volume
    447
    DOI
    https://doi.org/10.1007/978-3-319-31293-4_39
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/340773
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander