• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Biclustering analysis of gene expression data using multi-objective evolutionary algorithms

    Author(s)
    Golchin, Maryam
    Davarpanah, Seyed Hashem
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Clustering is an unsupervised learning technique that groups data into clusters using the entire conditions. However, sometimes, data is similar only under a subset of conditions. Biclustering allows clustering of rows and columns of a dataset simultaneously. It extracts more accurate information from sparse datasets. In recent years, biclustering has found many useful applications in different fields and many biclustering algorithms have been proposed. Using both row and column information of data, biclustering requires the optimization of two conflicting objectives. In this study, a new multi-objective evolutionary ...
    View more >
    Clustering is an unsupervised learning technique that groups data into clusters using the entire conditions. However, sometimes, data is similar only under a subset of conditions. Biclustering allows clustering of rows and columns of a dataset simultaneously. It extracts more accurate information from sparse datasets. In recent years, biclustering has found many useful applications in different fields and many biclustering algorithms have been proposed. Using both row and column information of data, biclustering requires the optimization of two conflicting objectives. In this study, a new multi-objective evolutionary biclustering framework using SPEA2 is proposed. A heuristic local search based on the gene and condition deletion and addition is added into SPEA2 and the best bicluster is selected using a new quantitative measure that considers both its coherence and size. The performance of our algorithm is evaluated using simulated and gene expression data and compared with several well-known biclustering methods. The experimental results demonstrate better performance with respect to the size and MSR of detected biclusters and significant enrichment of detected genes.
    View less >
    Conference Title
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOL. 2
    Volume
    2
    DOI
    https://doi.org/10.1109/ICMLC.2015.7340608
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/340863
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander