• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: The role of reactive oxygen species

    Author(s)
    Xia, Dehua
    Wang, Wanjun
    Yin, Ran
    Jiang, Zhifeng
    An, Taicheng
    Li, Guiying
    Zhao, Huijun
    Wong, Po Keung
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Biohazards are widely present in wastewater, and contaminated water can arouse various waterborne diseases. Therefore, effective removal of biohazards from water is a worldwide necessity. In this study, a novel all-solid-state Z-scheme g-C3N4/m-Bi2O4 heterojunction was constructed using a facile hydrothermal approach. Using the optimum g-C3N4/m-Bi2O4 (1:0.5), 6 log10 cfu/mL of E. coli K-12 could be completely inactivated within 1.5 h under visible light irradiation, while only 1.2 log10 cfu/mL and 3.2 log10 of E. coli K-12 were inactivated by pure g-C3N4 and Bi2O4 under the same experimental conditions respectively. Emphasis ...
    View more >
    Biohazards are widely present in wastewater, and contaminated water can arouse various waterborne diseases. Therefore, effective removal of biohazards from water is a worldwide necessity. In this study, a novel all-solid-state Z-scheme g-C3N4/m-Bi2O4 heterojunction was constructed using a facile hydrothermal approach. Using the optimum g-C3N4/m-Bi2O4 (1:0.5), 6 log10 cfu/mL of E. coli K-12 could be completely inactivated within 1.5 h under visible light irradiation, while only 1.2 log10 cfu/mL and 3.2 log10 of E. coli K-12 were inactivated by pure g-C3N4 and Bi2O4 under the same experimental conditions respectively. Emphasis was placed on identifying how the charge transfers across the g-C3N4/m-Bi2O4 heterojunction and a Z-scheme charge transfer mechanism was verified by reactive species trapping and quantification experiments. The Z-scheme charge separation within g-C3N4/m-Bi2O4 populated electrons and holes into the increased energy levels, thereby enabling one-step reduction of O2 to H2O2 and facilitating more generation of holes. This greatly accelerated photocatalytic efficiency on the inactivation of E. coli. Moreover, microscopy images indicate that cell structures were damaged and intracellular components were leaked out during the photocatalytic inactivation process. This study suggests that the newly fabricated Z-scheme g-C3N4/m-Bi2O4 is a promising photocatalyst for water disinfection.
    View less >
    Journal Title
    Applied Catalysis B: Environmental
    Volume
    214
    DOI
    https://doi.org/10.1016/j.apcatb.2017.05.035
    Subject
    Physical chemistry
    Physical chemistry not elsewhere classified
    Chemical engineering
    Environmental engineering
    Publication URI
    http://hdl.handle.net/10072/340870
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander