• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The covariant dissipation function for transient nonequilibrium states

    Author(s)
    Evans, Denis J.
    Bernhardt, Debra
    Williams, Stephen R.
    Griffith University Author(s)
    Bernhardt, Debra J.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    It has recently become apparent that the dissipation function, first defined by Evans and Searles [J. Chem. Phys. 113, 3503 (2000)] , is one of the most important functions in classical nonequilibrium statistical mechanics. It is the argument of the Evans-Searles fluctuation theorem, the dissipation theorem, and the relaxation theorems. It is a function of both the initial distribution and the dynamics. We pose the following question: How does the dissipation function change if we define that function with respect to the time evolving phase space distribution as one relaxes from the initial equilibrium distribution toward ...
    View more >
    It has recently become apparent that the dissipation function, first defined by Evans and Searles [J. Chem. Phys. 113, 3503 (2000)] , is one of the most important functions in classical nonequilibrium statistical mechanics. It is the argument of the Evans-Searles fluctuation theorem, the dissipation theorem, and the relaxation theorems. It is a function of both the initial distribution and the dynamics. We pose the following question: How does the dissipation function change if we define that function with respect to the time evolving phase space distribution as one relaxes from the initial equilibrium distribution toward the nonequilibrium steady state distribution? We prove that this covariant dissipation function has a rather simple fixed relationship to the dissipation function defined with respect to the initial distribution function. We also show that there is no exact, time-local, Evans-Searles nonequilibrium steady state fluctuation relation for deterministic systems. Only an asymptotic version exists.
    View less >
    Journal Title
    The Journal of Chemical Physics
    Volume
    133
    Issue
    5
    DOI
    https://doi.org/10.1063/1.3463439
    Subject
    Physical sciences
    Thermodynamics and statistical physics
    Chemical sciences
    Chemical thermodynamics and energetics
    Statistical mechanics in chemistry
    Engineering
    Publication URI
    http://hdl.handle.net/10072/34100
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander