• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cyclotides are a component of the innate defence of Oldenlandia affinis

    Author(s)
    Mylne, Joshua S.
    K. Wang, Conan
    L. van der Weerden, Nicole
    J. Craik, David
    Griffith University Author(s)
    Wang, Conan K.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Cyclotides are small cysteine-rich plant peptides similar in size and processing to the defensins. Long-term growth of the Rubiaceae family plant Oldenlandia affinis under different conditions reveals a diverse cyclotide gene and peptide expression profile, including tissue specificity, suggesting that different cyclotides are regulated differently both spatially and in response to the environment. To determine whether cyclotide precursor gene regulation was dynamic we exposed O. affinis to a range of abiotic, biotic and hormonal stimuli and monitored Oak1-4 expression over a 48 hour period. Unlike some defensins, the genes ...
    View more >
    Cyclotides are small cysteine-rich plant peptides similar in size and processing to the defensins. Long-term growth of the Rubiaceae family plant Oldenlandia affinis under different conditions reveals a diverse cyclotide gene and peptide expression profile, including tissue specificity, suggesting that different cyclotides are regulated differently both spatially and in response to the environment. To determine whether cyclotide precursor gene regulation was dynamic we exposed O. affinis to a range of abiotic, biotic and hormonal stimuli and monitored Oak1-4 expression over a 48 hour period. Unlike some defensins, the genes for cyclotide precursor proteins Oak1-4 did not display dynamic change, indicating that they contribute to the basal defence of O. affinis. Despite this lack of dynamism, the cyclotide profile of plants grown on plates differed markedly from field-grown plants and so prompted attempts to discover novel cyclotides and precursor genes. The two most abundant cyclotides from plate-grown O. affinis were sequenced and one was found to be an unusual linear cyclotide derivative, kalata B20-lin. Degenerate PCR of plate-grown O. affinis obtained five novel cyclotide genes including Oak9 which encodes for kalata B20-lin and appears to have arisen by the presence of a premature stop codon.
    View less >
    Journal Title
    Biopolymers
    Volume
    94
    Issue
    5
    DOI
    https://doi.org/10.1002/bip.21419
    Subject
    Structural Biology (incl. Macromolecular Modelling)
    Chemical Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/34110
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander