• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Low cost and green preparation process for α-Fe2O3@gum arabic electrode for high performance sodium ion batteries

    Author(s)
    Xu, Li
    Sitinamaluwa, Hansinee
    Li, Henan
    Qiu, Jingxia
    Wang, Yazhou
    Yan, Cheng
    Li, Huaming
    Yuan, Shouqi
    Zhang, Shanqing
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Conventional electrode manufacturing processes for lithium ion batteries involve the use of toxic organic solvents (such as N-methyl-2-pyrrolidone, NMP). A low cost and green preparation process for high performance electrodes for sodium ion batteries (SIBs) is important to address simultaneously the environmental and health risks of production processes and the shortage of lithium metal. Herein, gum arabic (GA), which is a non-toxic biodegradable biopolymer, is used as a water soluble binder to design a water-based electrode preparation process to fabricate α-Fe2O3 electrodes (i.e., α-Fe2O3@GA electrode). The α-Fe2O3@GA ...
    View more >
    Conventional electrode manufacturing processes for lithium ion batteries involve the use of toxic organic solvents (such as N-methyl-2-pyrrolidone, NMP). A low cost and green preparation process for high performance electrodes for sodium ion batteries (SIBs) is important to address simultaneously the environmental and health risks of production processes and the shortage of lithium metal. Herein, gum arabic (GA), which is a non-toxic biodegradable biopolymer, is used as a water soluble binder to design a water-based electrode preparation process to fabricate α-Fe2O3 electrodes (i.e., α-Fe2O3@GA electrode). The α-Fe2O3@GA electrode demonstrates better mechanical properties and binding capability than that of the α-Fe2O3 electrode with poly(vinylidene fluoride) (PVDF) as the binder (α-Fe2O3@PVDF electrode). Due to these merits, a higher rate and cycling performance of the α-Fe2O3@GA electrode are achieved compared with the α-Fe2O3@PVDF electrode when both electrodes are used for SIBs' application. The α-Fe2O3@GA electrode demonstrates high initial discharge and charge capacities of 2437 and 1102 mA h g−1 at the current density of 0.2 A g−1. The α-Fe2O3@GA electrode maintains a high reversible discharge capacity of 492 mA h g−1 at the current density of 5 A g−1 after 500 cycles with a fading rate of 0.08% per cycle after the first cycle, which indicates a superior cycling performance. The outstanding performance of the resultant SIBs suggests that the green fabrication process of the α-Fe2O3@GA electrode would play a critical role in the future battery industry.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    5
    Issue
    5
    DOI
    https://doi.org/10.1039/c6ta08918f
    Subject
    Macromolecular and materials chemistry
    Macromolecular and materials chemistry not elsewhere classified
    Materials engineering
    Other engineering
    Publication URI
    http://hdl.handle.net/10072/341207
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander