• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Robust image classification via low-rank double dictionary learning

    Author(s)
    Rong, Yi
    Xiong, Shengwu
    Gao, Yongsheng
    Griffith University Author(s)
    Gao, Yongsheng
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In recent years, dictionary learning has been widely used in various image classification applications. However, how to construct an effective dictionary for robust image classification task, in which both the training and the testing image samples are corrupted, is still an open problem. To address this, we propose a novel low-rank double dictionary learning (LRD2L) method. Unlike traditional dictionary learning methods, LRD2L simultaneously learns three components from training data: (1) a low-rank class-specific sub-dictionary for each class to capture the most discriminative features owned by each class, (2) a low-rank ...
    View more >
    In recent years, dictionary learning has been widely used in various image classification applications. However, how to construct an effective dictionary for robust image classification task, in which both the training and the testing image samples are corrupted, is still an open problem. To address this, we propose a novel low-rank double dictionary learning (LRD2L) method. Unlike traditional dictionary learning methods, LRD2L simultaneously learns three components from training data: (1) a low-rank class-specific sub-dictionary for each class to capture the most discriminative features owned by each class, (2) a low-rank class-shared dictionary which models the common patterns shared by different classes and (3) a sparse error container to fit the noises in data. As a result, the class-specific information, the class-shared information and the noises contained in data are separated from each other. Therefore, the dictionaries learned by LRD2L are noiseless, and the class-specific sub-dictionary of each class can be more discriminative. Also since the common features across different classes, which are essential to the reconstruction of image samples, are preserved in class-shared dictionary, LRD2L has a powerful reconstructive capability for newly coming testing samples. Experimental results on three public available datasets reveal the effectiveness and the superiority of our approach compared to the state-of-the-art dictionary learning methods.
    View less >
    Journal Title
    Lecture Notes in Computer Science
    Volume
    10132
    DOI
    https://doi.org/10.1007/978-3-319-51811-4_26
    Subject
    Other information and computing sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/341324
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander