PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction
Author(s)
Dehzangi, Abdollah
Lopez, Yosvany
Lal, Sunil Pranit
Taherzadeh, Ghazaleh
Michaelson, Jacob
Sattar, Abdul
Tsunoda, Tatsuhiko
Sharma, Alok
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Post-translational modification (PTM) is a covalent and enzymatic modification of proteins, which contributes to diversify the proteome. Despite many reported PTMs with essential roles in cellular functioning, lysine succinylation has emerged as a subject of particular interest. Because its experimental identification remains a costly and time-consuming process, computational predictors have been recently proposed for tackling this important issue. However, the performance of current predictors is still very limited. In this paper, we propose a new predictor called PSSM-Suc which employs evolutionary information of amino ...
View more >Post-translational modification (PTM) is a covalent and enzymatic modification of proteins, which contributes to diversify the proteome. Despite many reported PTMs with essential roles in cellular functioning, lysine succinylation has emerged as a subject of particular interest. Because its experimental identification remains a costly and time-consuming process, computational predictors have been recently proposed for tackling this important issue. However, the performance of current predictors is still very limited. In this paper, we propose a new predictor called PSSM-Suc which employs evolutionary information of amino acids for predicting succinylated lysine residues. Here we described each lysine residue in terms of profile bigrams extracted from position specific scoring matrices. We compared the performance of PSSM-Suc to that of existing predictors using a widely used benchmark dataset. PSSM-Suc showed a significant improvement in performance over state-of-the-art predictors. Its sensitivity, accuracy and Matthews correlation coefficient were 0.8159, 0.8199 and 0.6396, respectively.
View less >
View more >Post-translational modification (PTM) is a covalent and enzymatic modification of proteins, which contributes to diversify the proteome. Despite many reported PTMs with essential roles in cellular functioning, lysine succinylation has emerged as a subject of particular interest. Because its experimental identification remains a costly and time-consuming process, computational predictors have been recently proposed for tackling this important issue. However, the performance of current predictors is still very limited. In this paper, we propose a new predictor called PSSM-Suc which employs evolutionary information of amino acids for predicting succinylated lysine residues. Here we described each lysine residue in terms of profile bigrams extracted from position specific scoring matrices. We compared the performance of PSSM-Suc to that of existing predictors using a widely used benchmark dataset. PSSM-Suc showed a significant improvement in performance over state-of-the-art predictors. Its sensitivity, accuracy and Matthews correlation coefficient were 0.8159, 0.8199 and 0.6396, respectively.
View less >
Journal Title
Journal of Theoretical Biology
Volume
425
Subject
Mathematical sciences
Biological sciences