• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Diet induced obesity in rats reduces NHE3 and Na+/K+-ATPase expression in the kidney

    Author(s)
    Briffa, JF
    Grinfeld, E
    Jenkin, KA
    Mathai, ML
    Poronnik, P
    McAinch, AJ
    Hryciw, DH
    Griffith University Author(s)
    Skelly, Deanne
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The consumption of a high fat diet (HFD) is associated with proteinuria and altered sodium handling and excretion, which can lead to kidney disease. In the proximal tubule, the Na+/H+ Exchanger 3 (NHE3) is responsible for normal protein reabsorption and the reabsorption of approximately 70% of the renal sodium load. It is the Na+/K+-ATPase that provides the driving force for the reabsorption of sodium and its exit across the basolateral membrane. This study investigates the effects that consumption of a HFD for 12 weeks has on NHE3 and Na+/K+-ATPase expression in the kidney. Western blot analysis identified a significant ...
    View more >
    The consumption of a high fat diet (HFD) is associated with proteinuria and altered sodium handling and excretion, which can lead to kidney disease. In the proximal tubule, the Na+/H+ Exchanger 3 (NHE3) is responsible for normal protein reabsorption and the reabsorption of approximately 70% of the renal sodium load. It is the Na+/K+-ATPase that provides the driving force for the reabsorption of sodium and its exit across the basolateral membrane. This study investigates the effects that consumption of a HFD for 12 weeks has on NHE3 and Na+/K+-ATPase expression in the kidney. Western blot analysis identified a significant reduction in NHE3 and its modulator, phosphorylated protein kinase B, in renal lysate from obese rats. In the obese rats, a reduction in NHE3 expression in the proximal tubule may impact on the acidification of endosomes which are responsible for albumin uptake, suggesting a key role for the exchanger in protein endocytosis in obesity. Western blot analysis identified a reduction in Na+/K+-ATPase which could also potentially impact on albumin uptake and sodium reabsorption. This study demonstrates that consumption of a HFD for 12 weeks reduces renal NHE3 and Na+/K+-ATPase expression, an effect that may contribute to the albuminuria associated with obesity. Furthermore the reduction in these transporters is not likely to contribute to the reduced sodium excretion in obesity. These data highlight a potential link between NHE3 and Na+/K+-ATPase in the pathophysiological changes in renal protein handling observed in obesity.
    View less >
    Journal Title
    Clinical and Experimental Pharmacology and Physiology
    Volume
    42
    Issue
    10
    DOI
    https://doi.org/10.1111/1440-1681.12452
    Subject
    Zoology
    Pharmacology and pharmaceutical sciences
    Medical physiology
    Medical physiology not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/341904
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander