• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Direct activation of the proposed anti-diabetic receptor, GPR119 in cardiomyoblasts decreases markers of muscle metabolic activity

    Author(s)
    Cornall, Lauren M
    Hryciw, Deanne H
    Mathai, Michael L
    McAinch, Andrew J
    Griffith University Author(s)
    Skelly, Deanne
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    GPR119 agonists are emerging rapidly as a pharmaceutical treatment of diabetes. Diabetes is a known risk factor for cardiovascular disease yet the cardiac-specific consequences of GPR119 activation are unknown. This study demonstrated that GPR119 agonism in cardiac myoblasts reduces metabolic activity in high and low concentrations of fatty acids, with high concentrations of palmitate largely attenuating the effects of the GPR119 agonist, PSN632408. The effects of GPR119 activation on gene and protein markers of metabolism were dependent on fatty acid exposure. Activating GPR119 did not affect cell hypertrophy of lipid ...
    View more >
    GPR119 agonists are emerging rapidly as a pharmaceutical treatment of diabetes. Diabetes is a known risk factor for cardiovascular disease yet the cardiac-specific consequences of GPR119 activation are unknown. This study demonstrated that GPR119 agonism in cardiac myoblasts reduces metabolic activity in high and low concentrations of fatty acids, with high concentrations of palmitate largely attenuating the effects of the GPR119 agonist, PSN632408. The effects of GPR119 activation on gene and protein markers of metabolism were dependent on fatty acid exposure. Activating GPR119 did not affect cell hypertrophy of lipid accumulation regardless of lipid exposure. These results suggest that the pathways activated in response to GPR119 modulation in cardiac muscle cells differ between healthy and metabolically dysregulated states. However regardless of the pathway activated by GPR119, these effects may cause detrimental reductions to oxidative/metabolic capacity under both conditions. Thus further development of GPR119 agonists for treating metabolic diseases is warranted.
    View less >
    Journal Title
    Molecular and Cellular Endocrinology
    Volume
    402
    DOI
    https://doi.org/10.1016/j.mce.2015.01.006
    Subject
    Biological sciences
    Agricultural, veterinary and food sciences
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/341908
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander