RF Sputtering, Post-Annealing Treatment and Characterizations of ZnO (002) Thin Films on 3C-SiC (111)/Si (111) Substrates

View/ Open
Author(s)
Sasi, Visakh Valliyil
Iqbal, Abid
Chaik, Kien
Iacopi, Alan
Mohd-Yasin, Faisal
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
We report on the radio frequency (RF) sputtering of c-axis oriented ZnO thin films on top of epitaxial 3C-SiC-on-Si (111) substrates, which were then subjected to post-annealing treatment at 400, 600 and 800 °C. Grazing incident X-ray Diffraction (XRD) data show that the Full Width Half Maximum (FWHM) values for O2/Ar ratios between 30% and 60% are consistent, with a mean of 0.325° and a standard deviation of 0.03°. This is largely attributed to the smaller lattice mismatch of 5% between the ZnO (002) and SiC (111) films. The quality of the ZnO films deteriorated at the post-annealing treatment of 800 °C, as demonstrated by ...
View more >We report on the radio frequency (RF) sputtering of c-axis oriented ZnO thin films on top of epitaxial 3C-SiC-on-Si (111) substrates, which were then subjected to post-annealing treatment at 400, 600 and 800 °C. Grazing incident X-ray Diffraction (XRD) data show that the Full Width Half Maximum (FWHM) values for O2/Ar ratios between 30% and 60% are consistent, with a mean of 0.325° and a standard deviation of 0.03°. This is largely attributed to the smaller lattice mismatch of 5% between the ZnO (002) and SiC (111) films. The quality of the ZnO films deteriorated at the post-annealing treatment of 800 °C, as demonstrated by the increasing value of FWHM diffraction peaks, the reducing value of the peak intensity, the reducing percentage of (002) oriented area under the curve, and the increasing value of biaxial stress. We propose a simple growth model to explain the result.
View less >
View more >We report on the radio frequency (RF) sputtering of c-axis oriented ZnO thin films on top of epitaxial 3C-SiC-on-Si (111) substrates, which were then subjected to post-annealing treatment at 400, 600 and 800 °C. Grazing incident X-ray Diffraction (XRD) data show that the Full Width Half Maximum (FWHM) values for O2/Ar ratios between 30% and 60% are consistent, with a mean of 0.325° and a standard deviation of 0.03°. This is largely attributed to the smaller lattice mismatch of 5% between the ZnO (002) and SiC (111) films. The quality of the ZnO films deteriorated at the post-annealing treatment of 800 °C, as demonstrated by the increasing value of FWHM diffraction peaks, the reducing value of the peak intensity, the reducing percentage of (002) oriented area under the curve, and the increasing value of biaxial stress. We propose a simple growth model to explain the result.
View less >
Journal Title
Micromachines
Volume
8
Issue
5
Copyright Statement
© 2017 The Author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Other engineering not elsewhere classified
Nanotechnology