• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Osteoinductive composite coatings for flexible intramedullary nails

    Author(s)
    Bolbasov, EN
    Popkov, AV
    Popkov, DA
    Gorbach, EN
    Khlusov, IA
    Golovkin, AS
    Sinev, A
    Bouznik, VM
    Tverdokhlebov, SI
    Anissimov, YG
    Griffith University Author(s)
    Anissimov, Yuri G.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9 ± 2.4 MPa and a relative elongation to 5.9 ± 1.2%, but results in increased osteogenesis. It was demonstrated ...
    View more >
    This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9 ± 2.4 MPa and a relative elongation to 5.9 ± 1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~ 530 MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties.
    View less >
    Journal Title
    Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems
    Volume
    75
    DOI
    https://doi.org/10.1016/j.msec.2017.02.073
    Subject
    Biomedical engineering
    Materials engineering
    Materials engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/342061
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander