Osteoinductive composite coatings for flexible intramedullary nails
Author(s)
Bolbasov, EN
Popkov, AV
Popkov, DA
Gorbach, EN
Khlusov, IA
Golovkin, AS
Sinev, A
Bouznik, VM
Tverdokhlebov, SI
Anissimov, YG
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9 ± 2.4 MPa and a relative elongation to 5.9 ± 1.2%, but results in increased osteogenesis. It was demonstrated ...
View more >This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9 ± 2.4 MPa and a relative elongation to 5.9 ± 1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~ 530 MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties.
View less >
View more >This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9 ± 2.4 MPa and a relative elongation to 5.9 ± 1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~ 530 MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties.
View less >
Journal Title
Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems
Volume
75
Subject
Biomedical engineering
Materials engineering
Materials engineering not elsewhere classified