Show simple item record

dc.contributor.authorChaudhuri, Bidyut B.
dc.contributor.authorAdak, Chandranath
dc.description.abstractThis paper deals with the identification and processing of struck-out texts in unconstrained offline handwritten document images. If run on the OCR engine, such texts will produce nonsense character-string outputs. Here we present a combined (a) pattern classification and (b) graph-based method for identifying such texts. In case of (a), a feature-based two-class (normal vs. struck-out text) SVM classifier is used to detect moderate-sized struck-out components. In case of (b), skeleton of the text component is considered as a graph and the strike-out stroke is identified using a constrained shortest path algorithm. To identify zigzag or wavy struck-outs, all paths are found and some properties of zigzag and wavy line are utilized. Some other types of strike-out stroke are also detected by modifying the above method. The large sized multi-word and multi-line struck-outs are segmented into smaller components and treated as above. The detected struck-out texts can then be blocked from entering the OCR engine. In another kind of application involving historical documents, page images along with their annotated ground-truth are to be generated. In this case the strike-out strokes can be deleted from the words and then fed to the OCR engine. For this purpose an inpainting-based cleaning approach is employed. We worked on 500 pages of documents and obtained an overall F-Measure of 91.56% (91.06%) in English (Bengali) script for struck-out text detection. Also, for strike-out stroke identification and deletion, the F-Measures obtained were 89.65% (89.31%) and 91.16% (89.29%), respectively.
dc.relation.ispartofjournalPattern Recognition
dc.subject.fieldofresearchArtificial Intelligence and Image Processing not elsewhere classified
dc.subject.fieldofresearchArtificial Intelligence and Image Processing
dc.subject.fieldofresearchInformation Systems
dc.subject.fieldofresearchElectrical and Electronic Engineering
dc.titleAn approach for detecting and cleaning of struck-out handwritten text
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.hasfulltextNo Full Text
gro.griffith.authorAdak, Chandranath

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record