• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Surface geodesic pattern for 3D deformable texture matching

    Author(s)
    Hajati, Farshid
    Cheraghian, Ali
    Gheisari, Soheila
    Gao, Yongsheng
    Mian, Ajmal S
    Griffith University Author(s)
    Gao, Yongsheng
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    This paper presents a Surface Geodesic Pattern (SGP) representation for matching textured 3D deformable surfaces. SGP encodes the local variations of the surface texture derivatives to extract local information from distinctive textural relationships contained in a geodesic neighborhood. Thus, SGP derives its strength from the fusion of surface texture and shape information at the data level in a way that is invariant to non-rigid deformations. We also propose Gabor Topography Wavelet (GTW) for direct feature extraction from the range data. Both features are combined using a multi-view sparse representation to achieve higher ...
    View more >
    This paper presents a Surface Geodesic Pattern (SGP) representation for matching textured 3D deformable surfaces. SGP encodes the local variations of the surface texture derivatives to extract local information from distinctive textural relationships contained in a geodesic neighborhood. Thus, SGP derives its strength from the fusion of surface texture and shape information at the data level in a way that is invariant to non-rigid deformations. We also propose Gabor Topography Wavelet (GTW) for direct feature extraction from the range data. Both features are combined using a multi-view sparse representation to achieve higher discrimination capability while matching non-rigid 3D surfaces. The performance of the proposed method is evaluated extensively on the Bosphorus face database, the FRGC v2 face database, and the PolyU contact-free hand database and the results are compared to state-of-the-art methods. Experimental results show the effectiveness and superiority of the proposed method in recognizing objects under non-rigid surface deformations.
    View less >
    Journal Title
    Pattern Recognition
    Volume
    62
    DOI
    https://doi.org/10.1016/j.patcog.2016.08.019
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/342703
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander