Robustness of system-filter separation for the feedback control of a quantum harmonic oscillator undergoing continuous position measurement

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Szigeti, Stuart S.
Adlong, S. J.
Hush, Michael R.
Carvalho, Andre R. R.
Hope, Joseph J.
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
We consider the effects of experimental imperfections on the problem of estimation-based feedback control of a trapped particle undergoing continuous position measurement. These limitations violate the assumption that the estimator (i.e., filter) accurately models the underlying system, thus requiring a separate analysis of the system and filter dynamics. We quantify the parameter regimes for stable cooling and show that the control scheme is robust to detector inefficiency, time delay, technical noise, and miscalibrated parameters. We apply these results to the specific context of a weakly-interacting Bose-Einstein condensate ...
View more >We consider the effects of experimental imperfections on the problem of estimation-based feedback control of a trapped particle undergoing continuous position measurement. These limitations violate the assumption that the estimator (i.e., filter) accurately models the underlying system, thus requiring a separate analysis of the system and filter dynamics. We quantify the parameter regimes for stable cooling and show that the control scheme is robust to detector inefficiency, time delay, technical noise, and miscalibrated parameters. We apply these results to the specific context of a weakly-interacting Bose-Einstein condensate (BEC). Given that this system has previously been shown to be less stable than a feedback-cooled BEC with strong interatomic interactions, this result shows that reasonable experimental imperfections do not limit the feasibility of cooling a BEC by continuous measurement and feedback.
View less >
View more >We consider the effects of experimental imperfections on the problem of estimation-based feedback control of a trapped particle undergoing continuous position measurement. These limitations violate the assumption that the estimator (i.e., filter) accurately models the underlying system, thus requiring a separate analysis of the system and filter dynamics. We quantify the parameter regimes for stable cooling and show that the control scheme is robust to detector inefficiency, time delay, technical noise, and miscalibrated parameters. We apply these results to the specific context of a weakly-interacting Bose-Einstein condensate (BEC). Given that this system has previously been shown to be less stable than a feedback-cooled BEC with strong interatomic interactions, this result shows that reasonable experimental imperfections do not limit the feasibility of cooling a BEC by continuous measurement and feedback.
View less >
Journal Title
Physical Review A - Atomic, Molecular, and Optical Physics
Volume
87
Issue
1
Copyright Statement
© 2013 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Quantum Physics not elsewhere classified
Mathematical Sciences
Physical Sciences
Chemical Sciences