• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Number-phase Wigner representation for scalable stochastic simulations of controlled quantum systems

    Thumbnail
    View/Open
    HushPUB2915.pdf (416.4Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Hush, Michael R.
    Carvalho, Andre R. R.
    Hope, Joseph J.
    Griffith University Author(s)
    Ribeiro de Carvalho, Andre R.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Simulation of conditional master equations is important to describe systems under continuous measurement and for the design of control strategies in quantum systems. For large bosonic systems, such as Bose-Einstein condensates and atom lasers, full quantum-field simulations must rely on scalable stochastic methods. Currently, these methods have a convergence time that is restricted by the use of representations based on coherent states. Here, we show that typical measurements on atom-optical systems have a common form that allows for an efficient simulation using the number-phase Wigner (NPW) phase-space representation. We ...
    View more >
    Simulation of conditional master equations is important to describe systems under continuous measurement and for the design of control strategies in quantum systems. For large bosonic systems, such as Bose-Einstein condensates and atom lasers, full quantum-field simulations must rely on scalable stochastic methods. Currently, these methods have a convergence time that is restricted by the use of representations based on coherent states. Here, we show that typical measurements on atom-optical systems have a common form that allows for an efficient simulation using the number-phase Wigner (NPW) phase-space representation. We demonstrate that a stochastic method based on the NPW can converge orders of magnitude longer and more precisely than its coherent equivalent. We then examine how these methods can be used in multimode simulations, demonstrated by a simulation of a two-mode Bose-Hubbard model. Finally, we combine these techniques to demonstrate a full-field simulation of a realistic multimode quantum system controlled by active feedback.
    View less >
    Journal Title
    Physical Review A - Atomic, Molecular, and Optical Physics
    Volume
    85
    Issue
    2
    DOI
    https://doi.org/10.1103/PhysRevA.85.023607
    Copyright Statement
    © 2012 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Quantum Physics not elsewhere classified
    Mathematical Sciences
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/342739
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander