• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Differences in cyanobacterial strain responses to light and temperature reflect species plasticity

    Thumbnail
    View/Open
    XiaoPUB3651.pdf (146.4Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Xiao, Man
    Willis, Anusuya
    Burford, Michele A
    Griffith University Author(s)
    Burford, Michele A.
    Willis, Anusuya
    Xiao, Man
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Microcystis aeruginosa and Cylindrospermopsis raciborskii are two cyanobacterial species that dominate freshwaters globally. Multiple strains of each species with different physiology occur, however, many studies have focused only on one or two strains, limiting our understanding of both strain variation and characterisation of the species. Therefore, in this study we examined the variation in growth and morphology of multiple isolates of both species, isolated from two adjacent Australian reservoirs. Four M. aeruginosa strains (=isolates) (one colony-forming, three single-celled morphology) and eight C. raciborskii isolates ...
    View more >
    Microcystis aeruginosa and Cylindrospermopsis raciborskii are two cyanobacterial species that dominate freshwaters globally. Multiple strains of each species with different physiology occur, however, many studies have focused only on one or two strains, limiting our understanding of both strain variation and characterisation of the species. Therefore, in this study we examined the variation in growth and morphology of multiple isolates of both species, isolated from two adjacent Australian reservoirs. Four M. aeruginosa strains (=isolates) (one colony-forming, three single-celled morphology) and eight C. raciborskii isolates (five with straight trichomes, three with coiled trichomes) were cultured individually in a factorial designed experiment with four light intensities (L: 10, 30, 50 and 100 μmol photons m−2 s−1) and two temperatures (T: 20 and 28 °C). The specific growth rate (μ), cell volume, and final cell concentration was measured. The light attenuation coefficient (kj), a measure of self-shading, was calculated. The results showed that the intraspecific variation was greater than the interspecific variation. The μ of all isolates of M. aeruginosa and C. raciborskii ranged from 0.16 to 0.55 d−1 and 0.15 to 0.70 d−1, respectively. However, at a specific light and temperature the mean μ of all M. aeruginosa isolates and C. raciborskii isolates were similar. At the species level, M. aeruginosa had higher growth rates at higher light intensity but lower temperature (L100T20), while straight C. raciborskii had higher growth rates at lower light intensity but higher temperature (L50T28), and coiled C. raciborskii had higher growth rates at higher light intensity and higher temperature (L100T28). The final cell concentrations of M. aeruginosa were higher than C. raciborskii. However, C. raciborskii isolates had greater variation in μ, kj and cell volume than M. aeruginosa. kj varied with light and temperature, and decreased with surface-to-volume ratio within each species. kj was lower for M. aeruginosa compared to C. raciborskii as expected based on cell size, but interestingly, C. raciborskii coiled isolates had lower kj than the straight isolates suggesting lower effect of self-shading. This study highlights the extent of strain variation to environmental conditions and to species variability.
    View less >
    Journal Title
    Harmful Algae
    Volume
    62
    DOI
    https://doi.org/10.1016/j.hal.2016.12.008
    Copyright Statement
    © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Marine and Estuarine Ecology (incl. Marine Ichthyology)
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/342872
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander