• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Structural equation modelling reveals factors regulating surface sediment organic carbon content and CO2 efflux in a subtropical mangrove

    Thumbnail
    View/Open
    OuyangPUB4635.pdf (760.8Kb)
    Author(s)
    Ouyang, Xiaoguang
    Lee, Shing Yip
    Connolly, Rod M
    Griffith University Author(s)
    Connolly, Rod M.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Mangroves are blue carbon ecosystems that sequester significant carbon but release CO2, and to a lesser extent CH4, from the sediment through oxidation of organic carbon or from overlying water when flooded. Previous studies, e.g. Leopold et al. (2015), have investigated sediment organic carbon (SOC) content and CO2 flux separately, but could not provide a holistic perspective for both components of blue carbon. Based on field data from a mangrove in southeast Queensland, Australia, we used a structural equation model to elucidate (1) the biotic and abiotic drivers of surface SOC (10 cm) and sediment CO2 flux; (2) the effect ...
    View more >
    Mangroves are blue carbon ecosystems that sequester significant carbon but release CO2, and to a lesser extent CH4, from the sediment through oxidation of organic carbon or from overlying water when flooded. Previous studies, e.g. Leopold et al. (2015), have investigated sediment organic carbon (SOC) content and CO2 flux separately, but could not provide a holistic perspective for both components of blue carbon. Based on field data from a mangrove in southeast Queensland, Australia, we used a structural equation model to elucidate (1) the biotic and abiotic drivers of surface SOC (10 cm) and sediment CO2 flux; (2) the effect of SOC on sediment CO2 flux; and (3) the covariation among the environmental drivers assessed. Sediment water content, the percentage of fine-grained sediment (< 63 μm), surface sediment chlorophyll and light condition collectively drive sediment CO2 flux, explaining 41% of their variation. Sediment water content, the percentage of fine sediment, season, landform setting, mangrove species, sediment salinity and chlorophyll collectively drive surface SOC, explaining 93% of its variance. Sediment water content and the percentage of fine sediment have a negative impact on sediment CO2 flux but a positive effect on surface SOC content, while sediment chlorophyll is a positive driver of both. Surface SOC was significantly higher in Avicennia marina (2994 ± 186 g m− 2, mean ± SD) than in Rhizophora stylosa (2383 ± 209 g m− 2). SOC was significantly higher in winter (2771 ± 192 g m− 2) than in summer (2599 ± 211 g m− 2). SOC significantly increased from creek-side (865 ± 89 g m− 2) through mid (3298 ± 137 g m− 2) to landward (3933 ± 138 g m− 2) locations. Sediment salinity was a positive driver of SOC. Sediment CO2 flux without the influence of biogenic structures (crab burrows, aerial roots) averaged 15.4 mmol m− 2 d− 1 in A. marina stands under dark conditions, lower than the global average dark flux (61 mmol m− 2 d− 1) for mangroves.
    View less >
    Journal Title
    Science of the Total Environment
    Volume
    578
    DOI
    https://doi.org/10.1016/j.scitotenv.2016.10.218
    Copyright Statement
    © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Other environmental sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/343364
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander