Fluid flow and heat transfer of liquid-liquid two phase flow in microchannels: A review
Author(s)
Abdollahi, Ayoub
Sharma, Rajnish N.
Vatani, Ashkan
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
The fluid flow and heat transfer behavior of liquid–liquid two phase flows have led to significantly improve the heat transfer rates in microchannels. Both numerical and experimental studies are reviewed in this paper to gain useful insights into the effect of a number of parameters such as film thickness, Peclet number, working fluid and flow geometry on hydrodynamic and thermal behavior of microchannels using liquid-liquid two phase flow. In addition, the paper summarises information about common correlations proposed to predict the pressure drop and heat transfer coefficient in the form of Nusselt number (Nu). The present ...
View more >The fluid flow and heat transfer behavior of liquid–liquid two phase flows have led to significantly improve the heat transfer rates in microchannels. Both numerical and experimental studies are reviewed in this paper to gain useful insights into the effect of a number of parameters such as film thickness, Peclet number, working fluid and flow geometry on hydrodynamic and thermal behavior of microchannels using liquid-liquid two phase flow. In addition, the paper summarises information about common correlations proposed to predict the pressure drop and heat transfer coefficient in the form of Nusselt number (Nu). The present study shows that there is little agreement across the literature between measured pressure drop and Nusselt number and predictions based on these correlations. Finally, the conclusions and important summaries, and some possible future development of this field are presented.
View less >
View more >The fluid flow and heat transfer behavior of liquid–liquid two phase flows have led to significantly improve the heat transfer rates in microchannels. Both numerical and experimental studies are reviewed in this paper to gain useful insights into the effect of a number of parameters such as film thickness, Peclet number, working fluid and flow geometry on hydrodynamic and thermal behavior of microchannels using liquid-liquid two phase flow. In addition, the paper summarises information about common correlations proposed to predict the pressure drop and heat transfer coefficient in the form of Nusselt number (Nu). The present study shows that there is little agreement across the literature between measured pressure drop and Nusselt number and predictions based on these correlations. Finally, the conclusions and important summaries, and some possible future development of this field are presented.
View less >
Journal Title
International Communications in Heat and Mass Transfer
Volume
84
Subject
Mechanical engineering
Mechanical engineering not elsewhere classified