• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Population pharmacokinetic modelling of doxorubicin and doxorubicinol in children with cancer: is there a relationship with cardiac troponin profiles?

    Author(s)
    Kunarajah, Kuhan
    Hennig, Stefanie
    Norris, Ross
    Lobb, Michael
    Charles, Bruce G.
    Pinkerton, Ross
    Moore, Andrew S.
    Griffith University Author(s)
    Norris, Ross LG.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Purpose: Anthracyclines are a mainstay of the treatment of several childhood malignancies, but their utility is limited by dose-related cardiotoxicity. This study is aimed to explore the link between exposure of paediatric cancer patients to doxorubicin and its metabolite doxorubicinol, and cardiac troponin I (cTnI). Methods: In a prospective pilot study plasma doxorubicin, doxorubicinol, and cTnI concentrations were measured in samples from children undergoing cancer chemotherapy. A mixed-effects population pharmacokinetic model for doxorubicin and doxorubicinol and in combination with a turn-over model for cTnI were ...
    View more >
    Purpose: Anthracyclines are a mainstay of the treatment of several childhood malignancies, but their utility is limited by dose-related cardiotoxicity. This study is aimed to explore the link between exposure of paediatric cancer patients to doxorubicin and its metabolite doxorubicinol, and cardiac troponin I (cTnI). Methods: In a prospective pilot study plasma doxorubicin, doxorubicinol, and cTnI concentrations were measured in samples from children undergoing cancer chemotherapy. A mixed-effects population pharmacokinetic model for doxorubicin and doxorubicinol and in combination with a turn-over model for cTnI were developed. Results: Seventeen patients, aged 3.4–14.7 year, treated for a variety of cancers had 99 doxorubicin and 119 doxorubicinol concentrations analysed from samples drawn between 0.5 and 336 h after the start of the infusion. Eleven patients had received previous doses of anthracyclines, with a median cumulative prior dose of 90 mg/m2 (range 0–225 mg/m2). The median administered doxorubicin dose was 30 mg/m2 (range 25–75 mg/m2). Doxorubicin disposition was described by a three-compartment model with first-order elimination and metabolism to doxorubicinol. Body surface area was related to all clearance and distribution parameters and age further influenced clearance (CL, 58.7 L/h/1.8 m2 for an average 8.4-year-old patient). Combined doxorubicin and metabolite exposure stimulated a temporary increase in cTnI in plasma, with a concentration of 11.8 µg/L required to achieve half-maximal effect. Prior cumulative anthracycline dosage received by patients was predictive of an increased cTnI baseline prior to a new doxorubicin dose. Conclusion: Prior anthracycline exposure increased baseline cTnI in a dose-dependent manner, consistent with the known cumulative risk of anthracycline exposure-induced cardiotoxicity.
    View less >
    Journal Title
    Cancer Chemotherapy and Pharmacology
    Volume
    80
    Issue
    1
    DOI
    https://doi.org/10.1007/s00280-017-3309-6
    Subject
    Pharmacology and pharmaceutical sciences
    Pharmacology and pharmaceutical sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/344269
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander