• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Investigating the antiplasmodial activity of primary sulfonamide compounds identified in open source malaria data

    Thumbnail
    View/Open
    FisherPUB3768.pdf (500.8Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Fisher, Gillian M
    Bua, Silvia
    Del Prete, Sonia
    Arnold, Megan SJ
    Capasso, Clemente
    Supuran, Claudiu T
    Andrews, Katherine T
    Poulsen, Sally-Ann
    Griffith University Author(s)
    Andrews, Katherine T.
    Poulsen, Sally-Ann
    Fisher, Gill M.
    Arnold, Megan
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In the past decade there has been a significant reduction in deaths due to malaria, in part due to the success of the gold standard antimalarial treatment - artemisinin combination therapies (ACTs). However the potential threat of ACT failure and the lack of a broadly effective malaria vaccine are driving efforts to discover new chemical entities (NCEs) to target this disease. The primary sulfonamide (PS) moiety is a component of several clinical drugs, including those for treatment of kidney disease, glaucoma and epilepsy, however this chemotype has not yet been exploited for malaria. In this study 31 PS compounds sourced ...
    View more >
    In the past decade there has been a significant reduction in deaths due to malaria, in part due to the success of the gold standard antimalarial treatment - artemisinin combination therapies (ACTs). However the potential threat of ACT failure and the lack of a broadly effective malaria vaccine are driving efforts to discover new chemical entities (NCEs) to target this disease. The primary sulfonamide (PS) moiety is a component of several clinical drugs, including those for treatment of kidney disease, glaucoma and epilepsy, however this chemotype has not yet been exploited for malaria. In this study 31 PS compounds sourced from the GlaxoSmithKline (GSK) Tres Cantos antimalarial set (TCAMS) were investigated for their ability to selectively inhibit the in vitro growth of Plasmodium falciparum asexual stage malaria parasites. Of these, 14 compounds were found to have submicromolar activity (IC50 0.16–0.89 μM) and a modest selectivity index (SI) for the parasite versus human cells (SI > 12 to >43). As the PS moiety is known to inhibit carbonic anhydrase (CA) enzymes from many organisms, the PS compounds were assessed for recombinant P. falciparum CA (PfCA) mediated inhibition of CO2 hydration. The PfCA inhibition activity did not correlate with antiplasmodial potency. Furthermore, no significant difference in IC50 was observed for P. falciparum versus P. knowlesi (P > 0.05), a Plasmodium species that is not known to contain an annotated PfCA gene. Together these data suggest that the asexual intraerythrocytic stage antiplasmodial activity of the PS compounds examined in this study is likely unrelated to PfCA inhibition.
    View less >
    Journal Title
    International Journal for Parasitology: Drugs and Drug Resistance
    Volume
    7
    DOI
    https://doi.org/10.1016/j.ijpddr.2017.01.003
    Copyright Statement
    © 2017 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Medical Microbiology not elsewhere classified
    Medical Microbiology
    Publication URI
    http://hdl.handle.net/10072/344425
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander