Show simple item record

dc.contributor.authorEstivill-Castro, Vladimiren_US
dc.contributor.authorHeednacram, Apichaten_US
dc.contributor.authorSuraweera, Francisen_US
dc.date.accessioned2017-04-24T11:31:14Z
dc.date.available2017-04-24T11:31:14Z
dc.date.issued2010en_US
dc.date.modified2011-06-06T06:03:11Z
dc.identifier.issn03029743en_US
dc.identifier.doi10.1007/978-3-642-14031-0_30en_AU
dc.identifier.urihttp://hdl.handle.net/10072/34462
dc.description.abstractWe study a hard geometric problem. Given n points in the plane and a positive integer k, the Rectilinear k -Bends Traveling Salesman Problem asks if there is a piecewise linear tour through the n points with at most k bends where every line-segment in the path is either horizontal or vertical. The problem has applications in VLSI design. We prove that this problem belongs to the class FPT (fixed-parameter tractable). We give an algorithm that runs in O(kn 2?+?k 4k n) time by kernelization. We present two variations on the main result. These variations are derived from the distinction between line-segments and lines. Note that a rectilinear tour with k bends is a cover with k line-segments, and therefore a cover by lines. We derive FPT-algorithms using bounded-search-tree techniques and improve the time complexity for these variants.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.format.extent419869 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherSpringeren_US
dc.publisher.placeGermanyen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofpagefrom264en_US
dc.relation.ispartofpageto277en_US
dc.relation.ispartofjournalLecture Notes in Computer scienceen_US
dc.relation.ispartofvolume6196en_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchAnalysis of Algorithms and Complexityen_US
dc.subject.fieldofresearchcode080201en_US
dc.titleThe Rectilinear κ-Bends TSPen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.facultyGriffith Sciences, School of Information and Communication Technologyen_US
gro.rights.copyrightCopyright 2010 Springer Berlin / Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.comen_AU
gro.date.issued2010
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record