Show simple item record

dc.contributor.authorHan, Yanhe
dc.contributor.authorZhang, Shanqing
dc.contributor.authorZhao, Huijun
dc.contributor.authorWen, William
dc.contributor.authorZhang, Haimin
dc.contributor.authorWang, Hongjuan
dc.contributor.authorPeng, Feng
dc.date.accessioned2017-05-03T15:16:19Z
dc.date.available2017-05-03T15:16:19Z
dc.date.issued2010
dc.date.modified2010-10-08T06:55:35Z
dc.identifier.issn0743-7463
dc.identifier.doi10.1021/la903706e
dc.identifier.urihttp://hdl.handle.net/10072/34463
dc.description.abstractTitanium dioxide (TiO2) and boron-doped diamond (BDD) are two of the most popular functional materials in recent years. In this work, TiO2 nanoparticles were immobilized onto the BDD electrodes by a dip-coating technique. Continuous and uniform mixed-phase (anatase and rutile) and pure-anatase TiO2/BDD electrodes were obtained after calcination processes at 700 and 450 ì respectively. The particle sizes of both types of TiO2 film range from 20 to 30 nm. In comparison with a TiO2/indium tin oxide (ITO) electrode, the TiO2/BDD electrode demonstrates a higher photoelectrocatalytic activity toward the oxidation of organic compounds, such as glucose and potassium hydrogen phthalate. Among all the tested TiO2 electrodes, the mixed-phase TiO2/BDD electrode demonstrated the highest photoelectrocatalytic activity, which can be attributed to the formation of the p-n heterojunction between TiO2 and BDD. The electrode was subsequently used to detect a wide spectrum of organic compounds in aqueous solution using a steady-state current method. An excellent linear relationship between the steady-state photocurrents and equivalent organic concentrations was attained. The steady-state oxidation photocurrents of the mixed-phase TiO2/BDD electrode were insensitive to pH in the range of pH 2-10. Furthermore, the electrodes exhibited excellent robustness under strong acidic conditions that the TiO2/ITO electrodes cannot stand. These characteristics bestow the mixed-phaseTiO2/BDD electrode to be a versatile material for the sensing of organic compounds.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.publisher.placeUnited States
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom6033
dc.relation.ispartofpageto6040
dc.relation.ispartofissue8
dc.relation.ispartofjournalLangmuir
dc.relation.ispartofvolume26
dc.rights.retentionY
dc.subject.fieldofresearchColloid and surface chemistry
dc.subject.fieldofresearchOther environmental sciences not elsewhere classified
dc.subject.fieldofresearchcode340603
dc.subject.fieldofresearchcode419999
dc.titlePhotoelectrochemical Characterization of a Robust TiO2/BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.facultyGriffith Sciences, Griffith School of Environment
gro.rights.copyright© 2010 American Chemical Society. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
gro.date.issued2010
gro.hasfulltextNo Full Text
gro.griffith.authorZhao, Huijun
gro.griffith.authorWen, William Y.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record