• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Facile Formation of Branched Titanate Nanotubes to Grow a Three-Dimensional Nanotubular Network Directly on a Solid Substrate

    Author(s)
    Zhang, Haimin
    Liu, Porun
    Wang, Hongjuan
    Yu, Hua
    Zhang, Shanqing
    Zhu, Huaiyong
    Peng, Feng
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Zhang, Shanqing
    Zhang, Haimin
    Yu, Hua
    Liu, Porun
    Wang, Hongjuan
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    The hydrothermal formation of branched titanate nanotubes that grow a 3D nanotubular network directly onto a titanium substrate is reported. The resultant 3D nanotubular network exhibits a unique all-dimensional uniform porous structure. The inner and outer tubular diameters of branched titanate nanotubes were found to be approximately 6 and 12 nm, respectively. For the majority of the nanotubes, the wall is formed from three layers of titanate with an approximate 7.7 Šinterlayer space. In terms of individual nanotubes, these characteristics are quantitatively similar to those of previously reported nonbranched nanotubes. ...
    View more >
    The hydrothermal formation of branched titanate nanotubes that grow a 3D nanotubular network directly onto a titanium substrate is reported. The resultant 3D nanotubular network exhibits a unique all-dimensional uniform porous structure. The inner and outer tubular diameters of branched titanate nanotubes were found to be approximately 6 and 12 nm, respectively. For the majority of the nanotubes, the wall is formed from three layers of titanate with an approximate 7.7 Šinterlayer space. In terms of individual nanotubes, these characteristics are quantitatively similar to those of previously reported nonbranched nanotubes. However, in terms of how nanotubes are arranged in the film, the all-dimensional uniform nanotubular network structure obtained here is distinctively different from those of previously reported structures. The 3D nanotubular network structure was formed by the jointing of branched nanotubes. In contrast, the previously reported nanotubes tend to grow vertically on the substrate, and the resultant tubular films are formed by interwoven nonbranched nanotubes. The branched titanate nanotubes can be readily formed on titanium substrates but not in solution suspension forms. A continuous seed formation-oriented crystal growth mechanism was proposed for the branched titanate nanotubular network formation. Such a network structure could be useful for applications such as photocatalysis, membrane separation, field emission, and photovoltaic devices.
    View less >
    Journal Title
    Langmuir
    Volume
    26
    Issue
    3
    DOI
    https://doi.org/10.1021/la9041869
    Copyright Statement
    © 2010 American Chemical Society. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
    Subject
    Solid state chemistry
    Other environmental sciences not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/34465
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander