Facile Formation of Branched Titanate Nanotubes to Grow a Three-Dimensional Nanotubular Network Directly on a Solid Substrate
Author(s)
Zhang, Haimin
Liu, Porun
Wang, Hongjuan
Yu, Hua
Zhang, Shanqing
Zhu, Huaiyong
Peng, Feng
Zhao, Huijun
Year published
2010
Metadata
Show full item recordAbstract
The hydrothermal formation of branched titanate nanotubes that grow a 3D nanotubular network directly onto a titanium substrate is reported. The resultant 3D nanotubular network exhibits a unique all-dimensional uniform porous structure. The inner and outer tubular diameters of branched titanate nanotubes were found to be approximately 6 and 12 nm, respectively. For the majority of the nanotubes, the wall is formed from three layers of titanate with an approximate 7.7 Šinterlayer space. In terms of individual nanotubes, these characteristics are quantitatively similar to those of previously reported nonbranched nanotubes. ...
View more >The hydrothermal formation of branched titanate nanotubes that grow a 3D nanotubular network directly onto a titanium substrate is reported. The resultant 3D nanotubular network exhibits a unique all-dimensional uniform porous structure. The inner and outer tubular diameters of branched titanate nanotubes were found to be approximately 6 and 12 nm, respectively. For the majority of the nanotubes, the wall is formed from three layers of titanate with an approximate 7.7 Šinterlayer space. In terms of individual nanotubes, these characteristics are quantitatively similar to those of previously reported nonbranched nanotubes. However, in terms of how nanotubes are arranged in the film, the all-dimensional uniform nanotubular network structure obtained here is distinctively different from those of previously reported structures. The 3D nanotubular network structure was formed by the jointing of branched nanotubes. In contrast, the previously reported nanotubes tend to grow vertically on the substrate, and the resultant tubular films are formed by interwoven nonbranched nanotubes. The branched titanate nanotubes can be readily formed on titanium substrates but not in solution suspension forms. A continuous seed formation-oriented crystal growth mechanism was proposed for the branched titanate nanotubular network formation. Such a network structure could be useful for applications such as photocatalysis, membrane separation, field emission, and photovoltaic devices.
View less >
View more >The hydrothermal formation of branched titanate nanotubes that grow a 3D nanotubular network directly onto a titanium substrate is reported. The resultant 3D nanotubular network exhibits a unique all-dimensional uniform porous structure. The inner and outer tubular diameters of branched titanate nanotubes were found to be approximately 6 and 12 nm, respectively. For the majority of the nanotubes, the wall is formed from three layers of titanate with an approximate 7.7 Šinterlayer space. In terms of individual nanotubes, these characteristics are quantitatively similar to those of previously reported nonbranched nanotubes. However, in terms of how nanotubes are arranged in the film, the all-dimensional uniform nanotubular network structure obtained here is distinctively different from those of previously reported structures. The 3D nanotubular network structure was formed by the jointing of branched nanotubes. In contrast, the previously reported nanotubes tend to grow vertically on the substrate, and the resultant tubular films are formed by interwoven nonbranched nanotubes. The branched titanate nanotubes can be readily formed on titanium substrates but not in solution suspension forms. A continuous seed formation-oriented crystal growth mechanism was proposed for the branched titanate nanotubular network formation. Such a network structure could be useful for applications such as photocatalysis, membrane separation, field emission, and photovoltaic devices.
View less >
Journal Title
Langmuir
Volume
26
Issue
3
Copyright Statement
© 2010 American Chemical Society. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
Subject
Solid state chemistry
Other environmental sciences not elsewhere classified