• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Respiratory Compensation Point is Not a Valid Surrogate for Critical Power

    Author(s)
    Leo, Jeffrey A
    Sabapathy, Surendran
    Simmonds, Michael J
    Cross, Troy J
    Griffith University Author(s)
    Sabapathy, Surendran
    Simmonds, Michael J.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Purpose: It is unclear whether the respiratory compensation point (RCP) may be used as a valid surrogate for critical power (CP). Accordingly, we sought to determine the measurement agreement between the CP and the RCP obtained during incremental cycling of varying ramp slopes. Methods: Eleven recreationally active men completed three separate ramp-incremental cycling protocols, where the work rate increment was slow (SR, 15 W·min−1), medium (MR, 30 W·min−1), or fast (FR, 45 W·min−1). The RCP was obtained using the ventilatory equivalent for CO2 output method. The CP was determined via Morton's model for ramp-incremental ...
    View more >
    Purpose: It is unclear whether the respiratory compensation point (RCP) may be used as a valid surrogate for critical power (CP). Accordingly, we sought to determine the measurement agreement between the CP and the RCP obtained during incremental cycling of varying ramp slopes. Methods: Eleven recreationally active men completed three separate ramp-incremental cycling protocols, where the work rate increment was slow (SR, 15 W·min−1), medium (MR, 30 W·min−1), or fast (FR, 45 W·min−1). The RCP was obtained using the ventilatory equivalent for CO2 output method. The CP was determined via Morton's model for ramp-incremental exercise. The assumption that the RCP and the CP occur at equivalent external work rates was assessed by one-way repeated-measures ANOVA and by evaluating the concordance correlation coefficient (CCC) and typical error (root-mean-square error [RMSE]) for each ramp protocol, separately. Results: The external work rate corresponding to the RCP increased with increases in the ramp-incremental slope (P < 0.05). The RCP values in MR (268 ± 37 W) and FR (292 ± 41 W), but not SR (243 ± 35 W), were different (P < 0.05) from CP (247 ± 43 W). The degree to which the relationship between the CP and the RCP approximated the line of identity was relatively poor for SR (CCC = 0.73 and RMSE = 28 W), MR (CCC = 0.63 and RMSE = 36 W), and FR (CCC = 0.42 and RMSE = 55 W). Conclusions: Our data confirm that the external work rate associated with the RCP is labile and that these power outputs display poor measurement agreement with the CP. Taken together, these findings indicate that the RCP does not provide an accurate estimation of CP.
    View less >
    Journal Title
    Medicine and Science in Sports and Exercise
    Volume
    49
    Issue
    7
    DOI
    https://doi.org/10.1249/MSS.0000000000001226
    Subject
    Sports science and exercise
    Sports science and exercise not elsewhere classified
    Medical physiology
    Health services and systems
    Public health
    Clinical sciences
    Publication URI
    http://hdl.handle.net/10072/345002
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander