• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Sediment distribution in shallow estuaries at fine scale: in situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores

    Author(s)
    Kamal, Shafagh
    Warnken, Jan
    Bakhtiyari, Majid
    Lee, Shing Yip
    Griffith University Author(s)
    Warnken, Jan
    Lee, Joe Y.
    Kamal, Shafagh
    Bakhtiyari, Majid
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    One of the main services offered by mangroves is their capacity for trapping sediment. We investigated how spatial complexity of pneumatophores of Avicennia marina may influence fine-scale sediment particle size distribution. Using realistic three-dimensional models captured from pneumatophore patches, indices of complexity (the area/volume ratio, the Getis-Ord Gi* statistic) were calculated to quantify mangrove root structural complexity in five 1 × 1 m2 plots. The complexity of pneumatophores in 16 0.25 × 0.25 m2 subplots in each of the 5 plots was measured and its relationship with the relative abundance of fine sediment ...
    View more >
    One of the main services offered by mangroves is their capacity for trapping sediment. We investigated how spatial complexity of pneumatophores of Avicennia marina may influence fine-scale sediment particle size distribution. Using realistic three-dimensional models captured from pneumatophore patches, indices of complexity (the area/volume ratio, the Getis-Ord Gi* statistic) were calculated to quantify mangrove root structural complexity in five 1 × 1 m2 plots. The complexity of pneumatophores in 16 0.25 × 0.25 m2 subplots in each of the 5 plots was measured and its relationship with the relative abundance of fine sediment particles (clay and silt, <63 µm) was assessed. Results showed the complexity of the neighbouring subplots in the direction of incoming water was a major factor driving the trapping of suspended silt and clay, thus underpinning the function of mangrove aboveground structures in the distribution of fine particles. This simple low-cost technique to measure the complexity of mangroves demonstrates how further investigations may quantify the relationship between this complexity and their capacity to trap sediment with data derived from actual real-world models rather than based on simplistic, simulated structures. This information will be valuable in guiding future efforts in mangrove rehabilitation and restoration.
    View less >
    Journal Title
    Hydrobiologia
    DOI
    https://doi.org/10.1007/s10750-017-3178-3
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Environmental Sciences not elsewhere classified
    Earth Sciences
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/345194
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander