Genetic analysis of VCP and WASH complex genes in a German cohort of sporadic ALS-FTD patients

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Tuerk, Matthias
Schroeder, Rolf
Khuller, Katharina
Hofmann, Andreas
Berwanger, Carolin
Ludolph, Albert C
Dekomien, Gabriele
Mueller, Kathrin
Weishaupt, Jochen H
Thiel, Christian T
Clemen, Christoph S
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
Mutations of the human valosin-containing protein, p97 (VCP) and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex genes cause motor neuron and cognitive impairment disorders. Here, we analyzed a cohort of German patients with sporadic amyotrophic lateral sclerosis and frontotemporal lobar degeneration comorbidity (ALS/FTD) for VCP and WASH complex gene mutations. Next-generation panel sequencing of VCP, WASH1, FAM21C, CCDC53, SWIP, strumpellin, F-actin capping protein of muscle Z-line alfa 1 (CAPZA1), and CAPZB genes was performed in 43 sporadic ALS/FTD patients. Subsequent analyses included Sanger sequencing, ...
View more >Mutations of the human valosin-containing protein, p97 (VCP) and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex genes cause motor neuron and cognitive impairment disorders. Here, we analyzed a cohort of German patients with sporadic amyotrophic lateral sclerosis and frontotemporal lobar degeneration comorbidity (ALS/FTD) for VCP and WASH complex gene mutations. Next-generation panel sequencing of VCP, WASH1, FAM21C, CCDC53, SWIP, strumpellin, F-actin capping protein of muscle Z-line alfa 1 (CAPZA1), and CAPZB genes was performed in 43 sporadic ALS/FTD patients. Subsequent analyses included Sanger sequencing, in silico analyses, real-time PCR, and CCDC53 immunoblotting. We identified 1 patient with the heterozygous variant c.26C>T in CAPZA1, predicted to result in p.Ser9Leu, and a second with the heterozygous start codon variant c.2T>C in CCDC53. In silico analysis predicted structural changes in the N-terminus of CAPZα1, which may interfere with CAPZα:CAPZβ dimerization. Though the translation initiation codon of CCDC53 is mutated, real-time PCR and immunoblotting did neither reveal any evidence for a CCDC53 haploinsufficiency nor for aberrant CCDC53 protein species. Moreover, a disease-causing C9orf72 repeat expansion mutation was later on identified in this patient. Thus, with the exception of a putatively pathogenic heterozygous c.26C>T CAPZA1 variant, our genetic analysis did not reveal mutations in VCP and the remaining WASH complex subunits.
View less >
View more >Mutations of the human valosin-containing protein, p97 (VCP) and Wiskott-Aldrich syndrome protein and SCAR homolog (WASH) complex genes cause motor neuron and cognitive impairment disorders. Here, we analyzed a cohort of German patients with sporadic amyotrophic lateral sclerosis and frontotemporal lobar degeneration comorbidity (ALS/FTD) for VCP and WASH complex gene mutations. Next-generation panel sequencing of VCP, WASH1, FAM21C, CCDC53, SWIP, strumpellin, F-actin capping protein of muscle Z-line alfa 1 (CAPZA1), and CAPZB genes was performed in 43 sporadic ALS/FTD patients. Subsequent analyses included Sanger sequencing, in silico analyses, real-time PCR, and CCDC53 immunoblotting. We identified 1 patient with the heterozygous variant c.26C>T in CAPZA1, predicted to result in p.Ser9Leu, and a second with the heterozygous start codon variant c.2T>C in CCDC53. In silico analysis predicted structural changes in the N-terminus of CAPZα1, which may interfere with CAPZα:CAPZβ dimerization. Though the translation initiation codon of CCDC53 is mutated, real-time PCR and immunoblotting did neither reveal any evidence for a CCDC53 haploinsufficiency nor for aberrant CCDC53 protein species. Moreover, a disease-causing C9orf72 repeat expansion mutation was later on identified in this patient. Thus, with the exception of a putatively pathogenic heterozygous c.26C>T CAPZA1 variant, our genetic analysis did not reveal mutations in VCP and the remaining WASH complex subunits.
View less >
Journal Title
Neurobiology of Aging
Volume
56
Copyright Statement
© 2017 Federation of European Biochemical Societies, published by Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Clinical sciences
Clinical sciences not elsewhere classified
Neurosciences