• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Migration patterns and estuarine aggregations of a catadromous fish, Australian bass (Percalates novemaculeata) in a regulated river system

    Author(s)
    Harding, DJ
    Dwyer, RG
    Mullins, TM
    Kennard, MJ
    Pillans, RD
    Roberts, DT
    Griffith University Author(s)
    Kennard, Mark J.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Catadromous fish species require adequate flows to migrate between fresh and saltwater habitats to reproduce. However, artificial barriers and flow alteration affect fish populations by reducing habitat connectivity and disrupting movement cues. In regulated rivers, it is critical that migratory flow requirements are quantified to optimise water allocation for multiple users. In the present study, we assessed the migratory timing, flow and estuarine aggregation requirements for Australian bass (Percalates novemaculeata). Over 2 years, 66 bass were tracked using an acoustic receiver array in the Logan River (Qld, Australia). ...
    View more >
    Catadromous fish species require adequate flows to migrate between fresh and saltwater habitats to reproduce. However, artificial barriers and flow alteration affect fish populations by reducing habitat connectivity and disrupting movement cues. In regulated rivers, it is critical that migratory flow requirements are quantified to optimise water allocation for multiple users. In the present study, we assessed the migratory timing, flow and estuarine aggregation requirements for Australian bass (Percalates novemaculeata). Over 2 years, 66 bass were tracked using an acoustic receiver array in the Logan River (Qld, Australia). Bass performed large-scale downstream movements in response to elevated winter flows (40 and 108 m3 s–1), which facilitated migration to the lower estuary, where salinity conditions were appropriate for spawning. Bass migrations occurred only when gonads were mature, despite large flows providing opportunities for movement outside this period. Experimental flow releases from an impoundment (2.1 m3 s–1) during winter did not elicit a migratory response. Connectivity between upstream and estuarine habitats was reduced by the presence of instream weirs, with downstream movement across weirs occurring only when sufficient flow magnitude was achieved (>76.1 m3 s–1). These findings are relevant for water resource managers formulating environmental flow rules for catadromous fish species in systems with multiple instream artificial barriers.
    View less >
    Journal Title
    Marine and Freshwater Research
    Volume
    68
    Issue
    8
    DOI
    https://doi.org/10.1071/MF16125
    Subject
    Marine and estuarine ecology (incl. marine ichthyology)
    Publication URI
    http://hdl.handle.net/10072/346288
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander