BATC: A benchmark for aggregation techniques in crowdsourcing

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Nguyen, Quoc Viet Hung
Nguyen, Thanh Tam
Lam, Ngoc Tran
Aberer, Karl
Year published
2013
Metadata
Show full item recordAbstract
As the volumes of AI problems involving human knowledge are likely to soar, crowdsourcing has become essential in a wide range of world-wide-web applications. One of the biggest challenges of crowdsourcing is aggregating the answers collected from crowd workers; and thus, many aggregate techniques have been proposed. However, given a new application, it is difficult for users to choose the best-suited technique as well as appropriate parameter values since each of these techniques has distinct performance characteristics depending on various factors (e.g. worker expertise, question difficulty). In this paper, we develop a ...
View more >As the volumes of AI problems involving human knowledge are likely to soar, crowdsourcing has become essential in a wide range of world-wide-web applications. One of the biggest challenges of crowdsourcing is aggregating the answers collected from crowd workers; and thus, many aggregate techniques have been proposed. However, given a new application, it is difficult for users to choose the best-suited technique as well as appropriate parameter values since each of these techniques has distinct performance characteristics depending on various factors (e.g. worker expertise, question difficulty). In this paper, we develop a benchmarking tool that allows to (i) simulate the crowd and (ii) evaluate aggregate techniques in different aspects (accuracy, sensitivity to spammers, etc.). We believe that this tool will be able to serve as a practical guideline for both researchers and software developers. While researchers can use our tool to assess existing or new techniques, developers can reuse its components to reduce the development complexity.
View less >
View more >As the volumes of AI problems involving human knowledge are likely to soar, crowdsourcing has become essential in a wide range of world-wide-web applications. One of the biggest challenges of crowdsourcing is aggregating the answers collected from crowd workers; and thus, many aggregate techniques have been proposed. However, given a new application, it is difficult for users to choose the best-suited technique as well as appropriate parameter values since each of these techniques has distinct performance characteristics depending on various factors (e.g. worker expertise, question difficulty). In this paper, we develop a benchmarking tool that allows to (i) simulate the crowd and (ii) evaluate aggregate techniques in different aspects (accuracy, sensitivity to spammers, etc.). We believe that this tool will be able to serve as a practical guideline for both researchers and software developers. While researchers can use our tool to assess existing or new techniques, developers can reuse its components to reduce the development complexity.
View less >
Conference Title
Proceedings of the 36th international ACM SIGIR conference on Research & Development in Information Retrieval
Copyright Statement
© ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, ISBN: 978-1-4503-2034-4 doi: 10.1145/2484028.2484199
Subject
Database systems