On Leveraging Crowdsourcing Techniques for Schema Matching Networks

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Nguyen, Quoc Viet Hung
Nguyen, Thanh Tam
Miklos, Zoltan
Aberer, Karl
Year published
2013
Metadata
Show full item recordAbstract
As the number of publicly-available datasets are likely to grow, the demand of establishing the links between these datasets is also getting higher and higher. For creating such links we need to match their schemas. Moreover, for using these datasets in meaningful ways, one often needs to match not only two, but several schemas. This matching process establishes a (potentially large) set of attribute correspondences between multiple schemas that constitute a schema matching network. Various commercial and academic schema matching tools have been developed to support this task. However, as the matching is inherently uncertain, ...
View more >As the number of publicly-available datasets are likely to grow, the demand of establishing the links between these datasets is also getting higher and higher. For creating such links we need to match their schemas. Moreover, for using these datasets in meaningful ways, one often needs to match not only two, but several schemas. This matching process establishes a (potentially large) set of attribute correspondences between multiple schemas that constitute a schema matching network. Various commercial and academic schema matching tools have been developed to support this task. However, as the matching is inherently uncertain, the heuristic techniques adopted by these tools give rise to results that are not completely correct. Thus, in practice, a post-matching human expert effort is needed to obtain a correct set of attribute correspondences. Addressing this problem, our paper demonstrates how to leverage crowdsourcing techniques to validate the generated correspondences. We design validation questions with contextual information that can effectively guide the crowd workers. We analyze how to reduce overall human effort needed for this validation task. Through theoretical and empirical results, we show that by harnessing natural constraints defined on top of the schema matching network, one can significantly reduce the necessary human work.
View less >
View more >As the number of publicly-available datasets are likely to grow, the demand of establishing the links between these datasets is also getting higher and higher. For creating such links we need to match their schemas. Moreover, for using these datasets in meaningful ways, one often needs to match not only two, but several schemas. This matching process establishes a (potentially large) set of attribute correspondences between multiple schemas that constitute a schema matching network. Various commercial and academic schema matching tools have been developed to support this task. However, as the matching is inherently uncertain, the heuristic techniques adopted by these tools give rise to results that are not completely correct. Thus, in practice, a post-matching human expert effort is needed to obtain a correct set of attribute correspondences. Addressing this problem, our paper demonstrates how to leverage crowdsourcing techniques to validate the generated correspondences. We design validation questions with contextual information that can effectively guide the crowd workers. We analyze how to reduce overall human effort needed for this validation task. Through theoretical and empirical results, we show that by harnessing natural constraints defined on top of the schema matching network, one can significantly reduce the necessary human work.
View less >
Journal Title
Lecture Notes in Computer Science
Volume
7826
Copyright Statement
© 2013 Springer International Publishing AG. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com.
Subject
Database systems