• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical analysis of the efficiency of earth to air heat exchange systems in cold and hot-arid climates

    Thumbnail
    View/Open
    FazlikhaniPUB4997.pdf (1.441Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Fazlikhani, Faezeh
    Goudarzi, Hossein
    Solgi, Ebrahim
    Griffith University Author(s)
    Solgi, Ebrahim
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In order to examine and compare the efficiency of earth to air heat exchanger (EAHE) systems in hot-arid (Yazd) and cold (Hamadan) climates in Iran a steady state model was developed to evaluate the impact of various parameters including inlet air temperatures, pipe lengths and ground temperatures on the cooling and heating potential of EAHEs in both climates. The results demonstrated the ability of the system to not only improve the average temperature and decrease the temperature fluctuation of the outlet air temperature of EAHE, but also to trigger considerable energy saving. It was found that in both climates, the system ...
    View more >
    In order to examine and compare the efficiency of earth to air heat exchanger (EAHE) systems in hot-arid (Yazd) and cold (Hamadan) climates in Iran a steady state model was developed to evaluate the impact of various parameters including inlet air temperatures, pipe lengths and ground temperatures on the cooling and heating potential of EAHEs in both climates. The results demonstrated the ability of the system to not only improve the average temperature and decrease the temperature fluctuation of the outlet air temperature of EAHE, but also to trigger considerable energy saving. It was found that in both climates, the system is highly utilized for pre-heating, and its usage is unfeasible in certain periods throughout the year. In winter, EAHEs have the potential of increasing the air temperature in the range of 0.2–11.2 °C and 0.1–17.2 °C for Yazd and Hamadan, respectively. However, in summer, the system decreases the air temperature for the aforementioned cities in the range of 1.3–11.4 °C and 5.7–11.1 °C, respectively. The system ascertains to be more efficient in the hot-arid climate of Yazd, where it can be used on 294 days of the year, leading to 50.1–63.6% energy saving, when compared to the cold climate of Hamadan, where it can be used on 225 days of the year resulting in a reduction of energy consumption by 24.5–47.9%.
    View less >
    Journal Title
    Energy Conversion and Management
    Volume
    148
    DOI
    https://doi.org/10.1016/j.enconman.2017.05.069
    Copyright Statement
    © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/348517
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander