• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications

    Author(s)
    Qu, Xiaobo
    Zhang, Jin
    Wang, Shuaian
    Griffith University Author(s)
    Zhang, Jin
    Qu, Xiaobo
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In this research, we apply a new calibration approach to generate stochastic traffic flow fundamental diagrams. We first prove that the percentile based fundamental diagrams are obtainable based on the proposed model. We further prove the proposed model has continuity, differentiability and convexity properties so that it can be easily solved by Gauss–Newton method. By selecting different percentile values from 0 to 1, the speed distributions at any given densities can be derived. The model has been validated based on the GA400 data and the calibrated speed distributions perfectly fit the speed-density data. This proposed ...
    View more >
    In this research, we apply a new calibration approach to generate stochastic traffic flow fundamental diagrams. We first prove that the percentile based fundamental diagrams are obtainable based on the proposed model. We further prove the proposed model has continuity, differentiability and convexity properties so that it can be easily solved by Gauss–Newton method. By selecting different percentile values from 0 to 1, the speed distributions at any given densities can be derived. The model has been validated based on the GA400 data and the calibrated speed distributions perfectly fit the speed-density data. This proposed methodology has wide applications. First, new approaches can be proposed to evaluate the performance of calibrated fundamental diagrams by taking into account not only the residual but also ability to reflect the stochasticity of samples. Secondly, stochastic fundamental diagrams can be used to develop and evaluate traffic control strategies. In particular, the proposed stochastic fundamental diagram is applicable to model and optimize the connected and automated vehicles at the macroscopic level with an objective to reduce the stochasticity of traffic flow. Last but not the least, this proposed methodology can be applied to generate the stochastic models for most regression models with scattered samples.
    View less >
    Journal Title
    Transportation Research Part B
    Volume
    104
    DOI
    https://doi.org/10.1016/j.trb.2017.07.003
    Subject
    Applied mathematics
    Civil engineering
    Publication URI
    http://hdl.handle.net/10072/348551
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander