• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge

    Author(s)
    Wei, Wei
    Zhou, Xu
    Xie, Guo-Jun
    Duan, Haoran
    Wang, Qilin
    Griffith University Author(s)
    Wang, Qilin
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    This study proposed a novel free ammonia (FA, i.e., NH3) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250–680 mg NH3-N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250–680 mg NH3-N/L was capable of enhancing anaerobic ...
    View more >
    This study proposed a novel free ammonia (FA, i.e., NH3) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250–680 mg NH3-N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250–680 mg NH3-N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B0) of 8–17% (i.e., from 331 to 357–387 L CH4/kg VS added), with the highest B0 achieved at 420 mg NH3-N/L pretreatment. However, FA pretreatment of 250–680 mg NH3-N/L decreased hydrolysis rate (k) by 24–38% compared with control (i.e., from 0.29 d−1 to 0.18–0.22 d−1), which explained the lower methane production over the first 7 days’ digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol.
    View less >
    Journal Title
    Biotechnology and Bioengineering
    Volume
    114
    Issue
    10
    DOI
    https://doi.org/10.1002/bit.26348
    Subject
    Environmentally sustainable engineering
    Global and planetary environmental engineering
    Publication URI
    http://hdl.handle.net/10072/348598
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander