Cost-Optimal Planning using Weighted MaxSAT

View/ Open
Author(s)
Robinson, N
Gretton, C
Pham, DN
Sattar, A
Year published
2010
Metadata
Show full item recordAbstract
We consider the problem of computing optimal plans for propositional planning problems with action costs. In the spirit of leveraging advances in general-purpose automated reasoning for that setting, we develop an approach that operates by solving a sequence of partial weighted MaxSAT problems, each of which corresponds to a step-bounded variant of the problem at hand. Our approach is the first SAT-based system in which a proof of cost-optimality is obtained using a MaxSAT procedure. It is also the first system of this kind to incorporate an admissible planning heuristic. We perform a detailed empirical evaluation of our ...
View more >We consider the problem of computing optimal plans for propositional planning problems with action costs. In the spirit of leveraging advances in general-purpose automated reasoning for that setting, we develop an approach that operates by solving a sequence of partial weighted MaxSAT problems, each of which corresponds to a step-bounded variant of the problem at hand. Our approach is the first SAT-based system in which a proof of cost-optimality is obtained using a MaxSAT procedure. It is also the first system of this kind to incorporate an admissible planning heuristic. We perform a detailed empirical evaluation of our work using benchmarks from a number of International Planning Competitions.
View less >
View more >We consider the problem of computing optimal plans for propositional planning problems with action costs. In the spirit of leveraging advances in general-purpose automated reasoning for that setting, we develop an approach that operates by solving a sequence of partial weighted MaxSAT problems, each of which corresponds to a step-bounded variant of the problem at hand. Our approach is the first SAT-based system in which a proof of cost-optimality is obtained using a MaxSAT procedure. It is also the first system of this kind to incorporate an admissible planning heuristic. We perform a detailed empirical evaluation of our work using benchmarks from a number of International Planning Competitions.
View less >
Conference Title
COPLAS 2010 - Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems
Publisher URI
Copyright Statement
© 2010 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Use hypertext link for access to conference website.
Subject
Knowledge Representation and Machine Learning