• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Dynamics of hypersaline coastal waters in the Great Barrier Reef

    Thumbnail
    View/Open
    AnduttaPUB2463.pdf (880.8Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Andutta, Fernando P
    Ridd, Peter V
    Wolanski, Eric
    Griffith University Author(s)
    Pinheiro Andutta, Fernando
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    The coastal waters of the Great Barrier Reef (GBR) are hypersaline (salinity ∼37) during the dry season as a result of evaporation greatly exceeding rainfall, of shallow waters, and of the presence of numerous bays along the coast preventing rapid flushing. These hypersaline waters are not flushed out by salinity-driven baroclinic currents because these waters are vertically well-mixed. Instead these waters are transported by a longshore residual current and thus form a coastal boundary layer of hypersaline waters. As a result the hypersalinity distribution is 2-D with both cross-shelf and longshore gradients of salinity. ...
    View more >
    The coastal waters of the Great Barrier Reef (GBR) are hypersaline (salinity ∼37) during the dry season as a result of evaporation greatly exceeding rainfall, of shallow waters, and of the presence of numerous bays along the coast preventing rapid flushing. These hypersaline waters are not flushed out by salinity-driven baroclinic currents because these waters are vertically well-mixed. Instead these waters are transported by a longshore residual current and thus form a coastal boundary layer of hypersaline waters. As a result the hypersalinity distribution is 2-D with both cross-shelf and longshore gradients of salinity. The cross-shelf gradients are largely controlled by turbulent diffusion, while the longshore gradients are controlled by the residual currents that transport hypersaline waters longshore south ward in the central and southern regions of the GBR. Because every bay supplies hypersaline waters, the width of the coastal hypersaline layer increases southwards. Steady state is reached in about 100 days, which is the typical duration of the dry season. The dynamics of the GBR hypersaline coastal boundary layer thus differ from the classical inverse hypersaline systems, e.g. in Saloum River Estuary, Laguna San Ignacio, Mission Bay, Tomales Bay, San Diego Bay, Hervey Bay, Shark Bay, Coorong Coast Lagoon, Spencer Gulf, Gulf of California and many others where the salinity gradient is mainly 1-D with a dominant along-channel salinity gradient.
    View less >
    Journal Title
    Estuarine, Coastal and Shelf Science
    Volume
    94
    Issue
    4
    DOI
    https://doi.org/10.1016/j.ecss.2011.06.009
    Copyright Statement
    © 2011 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
    Subject
    Oceanography not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/349523
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander