Bacterial polyester inclusions engineered to display vaccine candidate antigens for use as a novel class of safe and efficient vaccine delivery agents

No Thumbnail Available
File version
Version of Record (VoR)
Author(s)
Parlane, Natalie A
Wedlock, D Neil
Buddle, Bryce M
Rehm, Bernd HA
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2009
Size
File type(s)
Location
License
Abstract

Bioengineered bacterial polyester inclusions have the potential to be used as a vaccine delivery system. The biopolyester beads were engineered to display a fusion protein of the polyester synthase PhaC and the two key antigens involved in immune response to the infectious agent that causes tuberculosis, Mycobacterium tuberculosis, notably antigen 85A (Ag85A) and the 6-kDa early secreted antigenic target (ESAT-6) from Mycobacterium tuberculosis. Polyester beads displaying the respective fusion protein at a high density were successfully produced (henceforth called Ag85A-ESAT-6 beads) by recombinant Escherichia coli. The ability of the Ag85A-ESAT-6 beads to enhance mouse immunity to the displayed antigens was investigated. The beads were not toxic to the animals, as determined by weight gain and absence of lesions at the inoculation site in immunized animals. In vivo injection of the Ag85A-ESAT-6 beads in mice induced significant humoral and cell-mediated immune responses to both Ag85A and ESAT-6. Vaccination with Ag85A-ESAT-6 beads was efficient at stimulating immunity on their own, and this ability was enhanced by administration of the beads in an oil-in-water emulsion. In addition, vaccination with the Ag85A-ESAT-6 beads induced significantly stronger humoral and cell-mediated immune responses than vaccination with an equivalent dose of the fusion protein Ag85A-ESAT-6 alone. The immune response induced by the beads was of a mixed Th1/Th2 nature, as assessed from the induction of the cytokine gamma interferon (Th1 immune response) and increased levels of immunoglobulin G1 (Th2 immune response). Hence, engineered biopolyester beads displaying foreign antigens represent a new class of versatile, safe, and biocompatible vaccines.

Journal Title
Applied and Environmental Microbiology
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
© 2009 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Microbiology not elsewhere classified
Persistent link to this record
Citation
Collections