Show simple item record

dc.contributor.authorParlane, Natalie A
dc.contributor.authorWedlock, D Neil
dc.contributor.authorBuddle, Bryce M
dc.contributor.authorRehm, Bernd HA
dc.date.accessioned2017-10-31T23:39:58Z
dc.date.available2017-10-31T23:39:58Z
dc.date.issued2009
dc.identifier.issn0099-2240
dc.identifier.doi10.1128/AEM.01965-09
dc.identifier.urihttp://hdl.handle.net/10072/350782
dc.description.abstractBioengineered bacterial polyester inclusions have the potential to be used as a vaccine delivery system. The biopolyester beads were engineered to display a fusion protein of the polyester synthase PhaC and the two key antigens involved in immune response to the infectious agent that causes tuberculosis, Mycobacterium tuberculosis, notably antigen 85A (Ag85A) and the 6-kDa early secreted antigenic target (ESAT-6) from Mycobacterium tuberculosis. Polyester beads displaying the respective fusion protein at a high density were successfully produced (henceforth called Ag85A-ESAT-6 beads) by recombinant Escherichia coli. The ability of the Ag85A-ESAT-6 beads to enhance mouse immunity to the displayed antigens was investigated. The beads were not toxic to the animals, as determined by weight gain and absence of lesions at the inoculation site in immunized animals. In vivo injection of the Ag85A-ESAT-6 beads in mice induced significant humoral and cell-mediated immune responses to both Ag85A and ESAT-6. Vaccination with Ag85A-ESAT-6 beads was efficient at stimulating immunity on their own, and this ability was enhanced by administration of the beads in an oil-in-water emulsion. In addition, vaccination with the Ag85A-ESAT-6 beads induced significantly stronger humoral and cell-mediated immune responses than vaccination with an equivalent dose of the fusion protein Ag85A-ESAT-6 alone. The immune response induced by the beads was of a mixed Th1/Th2 nature, as assessed from the induction of the cytokine gamma interferon (Th1 immune response) and increased levels of immunoglobulin G1 (Th2 immune response). Hence, engineered biopolyester beads displaying foreign antigens represent a new class of versatile, safe, and biocompatible vaccines.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherAmerican Society for Microbiology
dc.relation.ispartofpagefrom7739
dc.relation.ispartofpageto7744
dc.relation.ispartofissue24
dc.relation.ispartofjournalApplied and Environmental Microbiology
dc.relation.ispartofvolume75
dc.subject.fieldofresearchMicrobiology not elsewhere classified
dc.subject.fieldofresearchcode310799
dc.titleBacterial polyester inclusions engineered to display vaccine candidate antigens for use as a novel class of safe and efficient vaccine delivery agents
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dc.description.versionVersion of Record (VoR)
gro.rights.copyright© 2009 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
gro.hasfulltextNo Full Text
gro.griffith.authorRehm, Bernd


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record