• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S,N-containing Co/Ni MOFs for high performance supercapacitors

    Thumbnail
    View/Open
    TongPUB2494.pdf (796.0Kb)
    Author(s)
    Tong, Mingyu
    Liu, Shengwen
    Zhang, Xian
    Wu, Tianxing
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    Zhu, Xiaoguang
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Zhang, Haimin
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Due to their controllable morphologies, tunable porous structures, diverse compositions and easy fabrication, metal–organic frameworks (MOFs) are an ideal class of precursor material to develop high performance carbon-based materials for energy applications. In this work, two-dimensional (2D) Co/Ni MOFs nanosheets with a molar ratio of Co2+ to Ni2+ of 1 : 1 were first synthesized at room temperature using thiophene-2,5-dicarboxylate (Tdc) and 4,4′-bipyridine (4,4′-Bpy) as organic linkers. As a precursor material, the as-synthesized 2D Co/Ni MOFs nanosheets were further pyrolized at 550 °C in N2 atmosphere to incorporate 2D ...
    View more >
    Due to their controllable morphologies, tunable porous structures, diverse compositions and easy fabrication, metal–organic frameworks (MOFs) are an ideal class of precursor material to develop high performance carbon-based materials for energy applications. In this work, two-dimensional (2D) Co/Ni MOFs nanosheets with a molar ratio of Co2+ to Ni2+ of 1 : 1 were first synthesized at room temperature using thiophene-2,5-dicarboxylate (Tdc) and 4,4′-bipyridine (4,4′-Bpy) as organic linkers. As a precursor material, the as-synthesized 2D Co/Ni MOFs nanosheets were further pyrolized at 550 °C in N2 atmosphere to incorporate 2D CoNi alloy nanoparticles into S, N-doped carbon nanosheets (CoNi@SNC) with a surface area of 224 m2 g−1, a porous structure, and good conductivity. Interestingly, it was found that the 2D Co/Ni MOFs nanosheets can be directly used as electrode materials for supercapacitors, delivering a specific capacitance of 312 F g−1 at 1 A g−1, whereas CoNi@SNC derived from its MOFs precursor as an electrode material for supercapacitors exhibits a much higher specific capacitance (1970, 1897 and 1730 F g−1 at 1, 2, 5 A g−1, respectively) with long cycling life (retaining 95.1% of the value at 10 A g−1 after 3000 cycles) and excellent rate capability at a high charge/discharge current. Further, an asymmetric supercapacitor device was constructed with CoNi@SNC as the positive electrode and active carbon as the negative electrode, exhibiting an energy density of 55.7 W h kg−1 at a power density of 0.8 kW kg−1 with lifetime stability up to 4000 charge–discharge cycles (capacitance retention of ∼90.6%). The results demonstrate that electrochemical activation-generated CoNi oxides/oxyhydroxides on the surface of the CoNi alloy nanoparticles in alkaline electrolyte during electrochemical measurements are the electrochemical active species of the CoNi@SNC-constructed supercapacitor. Additionally, the high performance of the CoNi@SNC-constructed supercapacitor can be collectively attributed to its relatively high surface area, which is favourable for the exposure of electrochemical active sites; its porous structure, which promotes redox-related mass transport; and the combination of CoNi alloy nanoparticles with graphitic carbon, which functions as an electron collector to improve electron transfer.
    View less >
    Journal Title
    Journal of Materials Chemistry A: Materials for Energy and Sustainability
    Volume
    5
    Issue
    20
    DOI
    https://doi.org/10.1039/c7ta01008g
    Copyright Statement
    © 2017 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Materials Engineering not elsewhere classified
    Macromolecular and Materials Chemistry
    Materials Engineering
    Interdisciplinary Engineering
    Publication URI
    http://hdl.handle.net/10072/351633
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander