• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Phosphorus removal efficiency from wastewater under different loading conditions using sand biofilters augmented with biochar

    Author(s)
    El Hanandeh, A
    Gharaibeh, M
    Albalasmeh, AA
    Griffith University Author(s)
    El Hanandeh, Ali
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Treated wastewater is a valuable resource, particularly in countries facing water shortage such as Jordan. Nevertheless, excess nutrients, especially phosphorus, may have detrimental impacts on receiving waterbodies. Treated wastewater in Jordan often exceeds the recommended levels set by the Jordanian Standards for wastewater reuse and discharge. Therefore, it is important to reduce phosphorus loads to acceptable levels before discharge. Biofiltration is a low-cost technology that has shown good potential for wastewater treatment. The performance of biofilters largely depends on the media used. In this study, local sand and ...
    View more >
    Treated wastewater is a valuable resource, particularly in countries facing water shortage such as Jordan. Nevertheless, excess nutrients, especially phosphorus, may have detrimental impacts on receiving waterbodies. Treated wastewater in Jordan often exceeds the recommended levels set by the Jordanian Standards for wastewater reuse and discharge. Therefore, it is important to reduce phosphorus loads to acceptable levels before discharge. Biofiltration is a low-cost technology that has shown good potential for wastewater treatment. The performance of biofilters largely depends on the media used. In this study, local sand and sand augmented with biochar prepared from the olive oil processing waste (SBC) were used as filter media for phosphorus removal from clarified secondary treated wastewater. The two media types were tested under different hydraulic and phosphorus loading conditions to simulate shock, flooding, and inundation conditions. The results showed that sand media was more effective in removing phosphorus (90.8 ± 2.6%) than sand amended with biochar (83.3 ± 3.2%). Both media showed resilience under extreme loading conditions. Although phosphorus removal efficiency was negatively affected following the extreme loading events, the observed effects were temporary. The simulated inundation event further showed that the media was able to retain the adsorbed phosphorus. Furthermore, the phosphorus concentration in the effluent remained within the prescribed discharge guidelines at all times.
    View less >
    Journal Title
    International Journal of Environmental Science and Technology
    DOI
    https://doi.org/10.1007/s13762-017-1474-0
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Environmentally sustainable engineering
    Global and planetary environmental engineering
    Publication URI
    http://hdl.handle.net/10072/352404
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander