Degradation of Trace Organic Contaminants by a Membrane Distillation—Enzymatic Bioreactor

View/ Open
File version
Version of Record (VoR)
Author(s)
Asif, Muhammad B
Hai, Faisal I
Kang, Jinguo
van de Merwe, Jason P
Leusch, Frederic DL
Yamamoto, Kazuo
Price, William E
Nghiem, Long D
Year published
2017
Metadata
Show full item recordAbstract
Abstract
A high retention enzymatic bioreactor was developed by coupling membrane distillation with an enzymatic bioreactor (MD-EMBR) to investigate the degradation of 13 phenolic and 17 non-phenolic trace organic contaminants (TrOCs). TrOCs were effectively retained (90–99%) by the MD membrane. Furthermore, significant laccase-catalyzed degradation (80–99%) was achieved for 10 phenolic and 3 non-phenolic TrOCs that contain strong electron donating functional groups. For the remaining TrOCs, enzymatic degradation ranged from 40 to 65%. This is still higher than those reported for enzymatic bioreactors equipped with ultrafiltration ...
View more >Abstract A high retention enzymatic bioreactor was developed by coupling membrane distillation with an enzymatic bioreactor (MD-EMBR) to investigate the degradation of 13 phenolic and 17 non-phenolic trace organic contaminants (TrOCs). TrOCs were effectively retained (90–99%) by the MD membrane. Furthermore, significant laccase-catalyzed degradation (80–99%) was achieved for 10 phenolic and 3 non-phenolic TrOCs that contain strong electron donating functional groups. For the remaining TrOCs, enzymatic degradation ranged from 40 to 65%. This is still higher than those reported for enzymatic bioreactors equipped with ultrafiltration membranes, which retained laccase but not the TrOCs. Addition of three redox-mediators, namely syringaldehyde (SA), violuric acid (VA) and 1-hydroxybenzotriazole (HBT), in the MD-EMBR significantly broadened the spectrum of efficiently degraded TrOCs. Among the tested redox-mediators, VA (0.5 mM) was the most efficient and versatile mediator for enhanced TrOC degradation. The final effluent (i.e., membrane permeate) toxicity was below the detection limit, although there was a mediator-specific increase in toxicity of the bioreactor media.
View less >
View more >Abstract A high retention enzymatic bioreactor was developed by coupling membrane distillation with an enzymatic bioreactor (MD-EMBR) to investigate the degradation of 13 phenolic and 17 non-phenolic trace organic contaminants (TrOCs). TrOCs were effectively retained (90–99%) by the MD membrane. Furthermore, significant laccase-catalyzed degradation (80–99%) was achieved for 10 phenolic and 3 non-phenolic TrOCs that contain strong electron donating functional groups. For the remaining TrOCs, enzymatic degradation ranged from 40 to 65%. This is still higher than those reported for enzymatic bioreactors equipped with ultrafiltration membranes, which retained laccase but not the TrOCs. Addition of three redox-mediators, namely syringaldehyde (SA), violuric acid (VA) and 1-hydroxybenzotriazole (HBT), in the MD-EMBR significantly broadened the spectrum of efficiently degraded TrOCs. Among the tested redox-mediators, VA (0.5 mM) was the most efficient and versatile mediator for enhanced TrOC degradation. The final effluent (i.e., membrane permeate) toxicity was below the detection limit, although there was a mediator-specific increase in toxicity of the bioreactor media.
View less >
Journal Title
Applied Sciences
Volume
7
Issue
9
Copyright Statement
© 2017 The Author(s). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Note
Page numbers are not for citation purposes. Instead, this article has the unique article number of 879
Subject
Other environmental sciences not elsewhere classified